
TRANSFER LEARNING FOR BUILDING DAMAGE ASSESSMENT ∗

Yandi Wu
University of Wisconsin, Madison

Madison, WI, USA
yandi.wu@wisc.edu

Charlotte Ellison
U.S. Army Corps of Engineers

Engineer Research and Development Center
Geospatial Research Laboratory

Alexandria, VA, USA
Charlotte.L.Ellison@usace.army.mil

ABSTRACT

After a natural disaster or battle, damage assessment can be costly, time-consuming, and, in the case
of on-the-ground damage detection, a potentially dangerous process. An alternative to on-site or
manual battle damage assessment is image segmentation of satellite imagery taken after the disaster
or battle, namely, identifying and labeling buildings by damage level. Image segmentation can be
achieved by training a convolutional neural network when imagery is readily available. However,
battle damage data is limited, difficult to create, and typically focused in a single geographic region.
Because of this, one may want to repurpose a pretrained model to perform damage assessment on a
test set drawn from a different distribution as the training set. Unfortunately, a neural network trained
to perform image segmentation of images from one location may perform poorly on a test set from a
different location. Two specific transfer learning techniques, stochastic weight averaging (SWA) and
multidomain adaptive batch normalization (multiadaBN) are designed to address this out-of-domain
generalization problem, and will be the focus of this paper. We find that in the case where the training
set is small, as is often the case in the real world, the effectiveness of SWA and multiadaBN depends
on both the type of training data and training set, and in some cases, the two methods even decrease
model performance.
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1 Introduction

Assessing battle damage is a crucial step in the Joint Targeting Cycle (CJCSI 3162.02) and for general situational
awareness in areas of conflict. Battle Damage Assessment (BDA) is often performed under less-than-ideal conditions
due to limited data and time, which makes it ripe for automation using neural networks. However, one major downside
of neural networks is that they are data-greedy and in an ever-shifting battle space or global geopolitical environment,
acquiring labeled training data from an area of interest may not be feasible. Hence, this work focuses on using transfer
learning techniques to take models pretrained over a small, previously labeled dataset and apply them to new areas.

There are several ways to collect data for building damage detection (BDD), one aspect of BDA. One method is a field
survey, which requires onsite data collection. Field surveys are costly, time-consuming, and unviable if the target site is
unsafe to visit. A safer option is collecting data via remote sensing, such as satellite or drone imagery. While one can
employ specially trained analysts to label remotely sensed data, manual data labeling is often difficult, time-consuming,
and prone to human error. Automated damage assessment can provide a cheaper, faster, and potentially more accurate
solution to the aforementioned shortcomings of manual BDA.

Convolutional neural networks (CNNs) have been shown to effectively label satellite imagery from natural disasters
when the test and training data are drawn from the same distribution (identically, independently distributed, or IID).
However, this is an unrealistic scenario. A better alternative may be to repurpose a CNN trained on previous disasters or
battles to perform BDD on a new test set from a different location that had a limited size of collected data. This is the
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problem of Domain adaptation (DA) applied on satellite imagery, which are still in their early stages of development,
and two of which we explore two of these techniques in this paper.

In this paper, we first give an overview of the problem at hand, and previous work done to address the problem. We then
introduce the dataset, xBD, and our choice of training and test data designed to mimic battle data. Next, we introduce
the two transfer learning techniques we will be testing, SWA and multiadaBN, and our results from using various
training and testing data. Finally, we suggest some future work for BDD.

2 Related Works

In 2019, the Defense Innovation Unit launched the xView2 challenge, which invited participants to design a neu-
ral network to perform semantic segmentation on satellite images taken before and after disasters (Gupta et al;
https://xview2.org/). There were two main tasks in the xBD challenge: building localization, the detection of buildings
in the image, and damage assessment, the assignment of a damage level to each pixel. Gupta et al also introduced a
baseline UNet backbone model with a low F1 score. See the dataset section for more details. The challenge produced
some well-performing results, with the top performers achieving an F1 score of over 80 percent.

Gupta and Shah, however, observed that their model did not perform as well when the test data was drawn from a
different set of disasters as the training data (out of domain, or OOD setting). They proposed a Binary Cross Entropy
loss function in response to the OOD generalization problem and observe moderate improvements in results.

Outside the realm of data assessment via remotely sensed imagery, OOD generalization, or DA, is a well-studied
problem. PixelDA, the prototypical pixel-level DA model, is based on generative adversarial networks (GANs) and
alters images from the source domain to resemble those from the target domain (Bousmalis et al). Feature-level
DA methods transform the source and/or target domains to minimize the discrepancies between the two via feature
extraction. An example is Generate to Adapt, proposed by Sankaranarayanan et al, which brings the target and source
domains closer together in a joint feature space using a GAN. Tzeng et al propose Adversarial Discriminative Domain
Adaptation (ADDA), which also matches the two domains by extracting features from the target domain to align with
the source domain until a discriminator cannot distinguish between the target and source. Hybrid methods have also
been proposed, such as Contrastive Adaptation Network (CAN), which alternates between clustering and adaptation by
minimizing intra-class discrepancies and maximizing inter-class margins (Kang et al).

Despite such advances, there is not yet much literature on image segmentation of satellite images in the OOD setting.
Benson and Ecker apply stochastic weight averaging (SWA) and multidomain batch normalization (multiadaBN), two
transfer learning techniques, to two models: one with a ResNet50 backbone and the other with a HRNet backbone.
They observe improvements in the F1 scores when both methods are applied in the OOD setting, with the results more
noticeable for the ResNet50 model. Since Benson and Ecker’s code is publicly available and well-documented, their
work serves as the basis for this paper, although other work on transfer learning on satellite imagery has been done.
Lin et al propose a pair of GANs to perform image segmentation on OOD hurricane data. For instance, they use data
collected from Hurricane Sandy to train their GANs and Hurricane Irma data for testing. They report a F1 score of at
least 81 percent in all scenarios and show their GANs outperform other models adapted for transfer learning. Valetjin et
al (2020) use a model with an Inceptionv3 backbone and divide their test and training data by disaster type, in particular
focusing on wind and water disasters. They found using the Joplin tornado for the OOD testing (and other wind disasters
for training) yielded much better results than using the Nepal flood for testing (and other water disasters for training).
In a way, some of their results mirror ours, showing it can be hard to predict what factors influence transferability.

3 Dataset

We work with the xBD dataset, as it contains examples of damage from across the globe and spans different disaster
types, providing a varied testbed on which to explore the effect of transfer learning on OOD performance. It consists
of 22,068 pre- and post-disaster RGB satellite images of size 1024 x 1024 pixels introduced as part of the xView2
challenge (Gupta et al 2019). The dataset also provides polygon-labeled buildings for the 10,101 pairs of satellite images
that are part of its training and validation sets. Each building is also labeled with “no damage,” “minor damage,” “major
damage,” and “destroyed” (see Figure 1). The remaining pairs of images are set aside in the “hold” set, which was not
made publicly available until after the xView2 challenge and used by the organizers to evaluate model performance. We
use a subset of the “hold” data for IID model performance evaluation.

We also consider the “Tier 3” dataset that was later added to the original xBD dataset, which contains disasters not
present in the original dataset associated with the challenge and thus serves as the perfect candidate with which we can
study OOD generalization. See the experiments section for more details.
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Table 1: Pixel counts of two datasets of training data

No Damage Minor Damage Major Damage Destroyed Total
Most Damaged 5842894 200768 193245 4773680 11010587

Dataset (53.07%) (1.82%) (1.76%) (43.36%)
Balanced Dataset 10053437 270168 217187 4368461 14543366

(67.4%) (1.81%) (1.46%) (29.3%)

Table 2: Pixel counts of two datasets of validation data

No Damage Minor Damage Major Damage Destroyed Total
Most Damaged 3246976 86317 25081 1188238 4546612

Dataset (71.42%) (1.90%) (0.55%) (26.13%)
Balanced Dataset 4235552 114914 43771 514039 4908276

(86.29%) (2.34%) (2.34%) (10.47%)

4 Methods

Since our main objective is battle damage assessment, we focused on disasters whose post-disaster images resemble a
war zone. This rules out, for example, disasters such as flooding and volcano eruptions. In the end, our training set
consisted of images from the Mexico City earthquake and Santa Rosa and SoCal fires, as fire damage is often seen in a
war zone, and densely populated cities like Mexico City are commonly targeted.

The xBD data contains high amounts of negative imagery, or images with little to no damaged buildings, often collected
from rural areas. Data collected over a warzone, however, would not exhibit high levels of negative imagery, as the
area of interest is likely to be known and specific. To reflect a realistic BDA dataset, data is limited to a small training
set with no negative imagery. Testing data is also restricted to just fire damage, but with the realization that one could
benefit from analyzing data from more urban settings. We now explain our training and test data selection, as well as
other details about our experiments, such as the model, DA techniques, and scoring techniques used.

4.1 Training Data

We now explain how to create training data similar to the smaller urban dataset with high levels of damage that we might
collect after a battle. We use two sets of training data, both containing 150 images. The first dataset, which we call the
most damaged dataset, consists of images with the highest number of pixels labeled as damaged. As demonstrated by
Table 1, most of these pixels are labeled as “destroyed.” The second dataset consists of a 50/50/50 split of images with
the highest number of pixels labeled as “minor damage,” “major damage,” and “destroyed” respectively. This balanced
dataset contains more examples of minor and major damage, the rarest damage categorizations. Images that appear in
the top 50 in more than one list are replaced with another image further down the list. In the end, the two datasets had
108 images in common, which is not surprising since images with high levels of damage are likely to be chosen for both
training sets.

The following table shows the number of pixels in each damage category. Since there are not many examples of major
damage in the training dataset, for the balanced dataset, all of the samples exhibiting any major damage are used. Some
of the images with major damage tended to have more negative imagery, so the proportion of damaged pixels labeled as
major and minor damage is similar for the two datasets.

A similar technique was used for validation. We selected 35 images for two separate validation datasets. The first “most
damaged” dataset contains 35 images from the original validation set for the xView2 challenge with the most damaged
pixels. The “balanced” dataset contains a 12/12/11 split of images with the most pixels labeled by “minor damage,”
“major damage,” and “destroyed” respectively. The two validation datasets shared 22 images, but the proportions of
damage levels are different (see Table 2). In particular, the balanced dataset contains a higher proportion of negative
imagery and more pixels labeled with minor and major damage while the most damaged dataset contains a large number
of destroyed pixels and more damaged pixels.

4.2 Model

We used the Dual HRNet model developed by Koo et al, which placed fifth in the xView2 challenge. Dual-HRNet
consists of two ImageNet pretrained HRNet backbones developed by Wang et al. One is used for localization and
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Table 3: Classification data for testing and training sets (pixel count)

Background No Damage Minor Damage Major Damage Destroyed
Tornado 12630400 (81.55%) 355299 (2.29%) 568030 (3.67%) 452979 (2.92%) 1481292 (9.56%)
Water 13658133 (88.19%) 803703 (5.19%) 347902 (2.25%) 441801 (2.85%) 236461 (1.52%)
Fire 14936760 (96.44%) 289448 (1.87%) 20724 (0.13%) 29755 (0.19%) 211313 (1.36%)

Train 146275813 (93.00%) 5842894 (3.71%) 200768 (1.28%) 193245 (1.23%) 4773680 (3.04%)

one for classification, amalgamated by three fusion blocks. To address the class imbalance problem, the authors use
the Lovasz softmax function. We chose this model because it is a high-ranking entry that only uses one model for its
backbone, as opposed to the winning entry, which is an ensemble of multiple networks and would thus be hard to train
with limited GPU memory.

In accordance with the original training scheme, the input data consists of random cropping of the original 1024 x 1024
pixel sample images into 512 x 512 pixel tiles, followed by standard augmentation techniques. The model is trained
with a Nvidia RTX 2060 GPU over 500 epochs with a SGD optimizer with a base learning rate of 0.01. Since we had
very limited GPU memory, we decrease the batch size to 1 (compared to 32 in Koo et al and 6 in Benson and Ecker).

4.3 Methods for improving OOD Generalization

Benson and Ecker employ two methods for OOD generalization: stochastic weight averaging (SWA) and multi-domain
batch normalization (multiadaBN).

There are two main ways in which a model trained with SWA differs from a typical model (Izmailov et al). First, SWA
uses a SGD optimization function with a constant or cyclical learning rate; in our case, we found a constant learning
rate of 0.001 was optimal, after running various experiments. Secondly, SWA stores the weight parameters of the
last specified number of epochs and averages them in the end for the final model. In our case, following Benson and
Ecker, we store the weight parameters of 40 epochs after training for 500 epochs. SWA is a popular method for OOD
generalization since its publicly available code is not hard to implement and has relatively little computational overhead.

Batch normalization (BatchNorm) is a standard way to stabilize and speed up neural networks, but the BatchNorm
layers use the distribution of the training sample, which can differ greatly from the distribution of the test sample.
Adaptive batch normalization (adaBN) addresses OOD generalization by recalculating the BatchNorm layers during
testing using statistics from the test sample (Schneider et al). Since there are multiple disasters in the training set of our
data, we are training across multiple domains rather than a single domain. As a result, the original adaBN is not suitable
for training in multiple domains, so Benson and Ecker develop multi-domain adaBN (multiadaBN), which trains each
disaster in separate mini-batches instead of using a mixture distribution that includes all the domains.

4.4 Testing

Following the lead of Gupta and Shah, we use the Tier 3 dataset for OOD testing. As with the training data, we
exclusively use datasets exhibiting fire damage to reflect our end goal of BDA. In the end, we drew data only from the
Portugal wildfire, Pinery bushfire, and Woolsey fire disasters.

Due to our very limited GPU memory, we could not run testing on some of the models without cropping the input
image. After running experiments, we determined that 880 x 880 pixels was the maximum size of the input image we
could use. As a result, we applied center crop to all our test images, making sure to also crop the ground truth data.

We also explored how well the models generalize to other disasters. We chose two other sets of disasters: tornados
and water disasters from both the Tier 3 and original holdout data. Each test set, like the original fire damage test set,
contained a sample of 20 images exhibiting the most damage. The tornados dataset drew samples from the Joplin,
Tuscaloosa, and Moore tornados while the water dataset drew samples from the Midwest and Nepal floods and the Palu
tsunami (although none of the Midwest flood data was ultimately selected). The distribution of pixels for each test set is
shown in Table 3. Note that compared to the other test sets, the original fire damage dataset had the highest percentage
of background pixels, meaning it tended to be the least urban. We tested the model trained with the most damaged
dataset, since the test set consisted of samples with the most damage.
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Table 4: MultiadaBN F1 scores for Tier 3 fire vs water disasters

total F1 Damage F1 Loc F1 No Minor Major Destroyed
Damage Damage Damage

Tier 3 xView2 metric: 0.1832 xView2 metric: 4.0x10-6 0.6106 0.7050 0.03158 0 0.5300
Fires Averaged F1: 0.4787 Averaged F1: 0.4221
Tier 3 xView2 metric: 0.1931 xView2 metric: 4.0x10-6 0.6437 0.5222 0.03833 0 0.1591
Water Averaged F1: 0.3610 Averaged F1: 0.2399

4.5 Scoring

The original xView2 challenge scoring calculates F1total = 0.3F1loc + 0.7F1dmg, the weighted average of the
localization and damage F1 scores.

The damage F1 scores is calculated by:

F1dmg =
4

[(F1nodmg + ϵ)−1 + (F1mindmg + ϵ)−1 + (F1majdmg + ϵ)−1 + (F1dest + ϵ)−1]
(1)

The subscripts of the F1 scores in the denominator denote the damage levels, and EPSILON = 10-6 to prevent division
by 0. This damage F1 score is challenging to work with because it very heavily penalizes a low F1 score in any category.
In other words, the lowest damage F1 score will dictate the order of magnitude of the total damage F1 score. This is
not a suitable metric for differentiating instances where one damage category has very low F1 scores, which is true in
our setting with a small training dataset size. For example, consider Table 4, which consists of F1 scores of the model
trained with the most damaged dataset and multiadaBN and tested on Tier 3 fire and water disaster data. As expected,
since the model was trained on fire data, it does a much better job classifying destroyed buildings in the fire test set, as
well as buildings with no damage. There is a marginal difference in its ability to classify minor damage. Despite an
overall superior performance on the fire disaster test data, since the F1 scores for major damage are 0 for both datasets,
the two datasets have the same damage F1, which is about 4 EPSILON.

An alternative way to calculate the damage F1 is to take the average of the F1 scores in each individual category. As
seen in the table, the low minor and major damage F1 scores still heavily penalize the damage F1 score, but it is now
more apparent that the model performed better on the Tier 3 fire data. Since the F1 score for major and minor damage is
generally very low in our setting with a small training set, we will be calculating damage F1 by averaging the F1 scores.

5 Results

We now state the main conclusions we derived from our experiments.

5.1 The efficacy of multiadaBN and SWA depends on the disaster type

Unlike what we see with the fire and water damage data, multiadaBN and SWA appear to improve the tornado damage
F1 scores, with little to no effect on the localization scores for all three disaster categories (see Table 5). For the water
data, the baseline exhibits the best F1 scores with the exception of the destroyed F1 score, which multiadaBN and SWA
both appear to improve. On the other hand, for the tornado data, the model with both multiadaBN and SWA exhibits
the best F1 scores with the exception of the major damage F1 score. For the fire data, there is no clear conclusion
for which model performs best, but the damage F1 scores appear to decrease with the application of multiadaBN.
Upon examination of the confusion matrix, we find multiadaBN increases the proportion of buildings misclassified as
destroyed (recall). See Figure 4 for examples.

5.2 The efficacy of multiadaBN and SWA depends on the training set

MultiadaBN and SWA appear to improve the model trained on the balanced training set, but not the most damaged
training set. Table 5 (data for models trained with the most damaged training set) indicates that applying multiadaBN
decreases the damage F1 score while applying SWA does not significantly affect it. Neither method appears to affect
the localization F1 score significantly. On the other hand, applying both methods appears to improve the localization F1
score for the balanced dataset, and applying the two methods in conjunction improves the damage F1 score as well.
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Table 5: Summary of F1 scores

Baseline SWA multiadaBN multiadaBN + SWA
Most damage fire 0.4461 0.4589 0.4049 0.4136

Balanced fire 0.3565 0.3804 0.3648 0.4131
Most damage tornado 0.4086 0.4353 0.4413 0.4610
Most damage water 0.3288 0.3109 0.319 0.3274

Table 6: Generalization gaps

Baseline SWA multiadaBN multiadaBN + SWA
Most damage fire 0.0923 0.0703 0.1485 0.1186

Balanced fire 0.1298 0.0939 0.1121 0.0712
Most damage tornado 0.1531 0.1675 0.1810 0.1299
Most damage water 0.1254 0.0980 0.1352 0.0442

5.3 MultiadaBN universally decreases the model’s ability to classify minor and major damage

All models struggle to classify major and minor damage, regardless of the training or testing set used. MultiadaBN
appears to adversely affect the models’ ability to classify these damage categories, consistently decreasing the F1 minor
damage scores and failing to detect any major damage. Even with the IID test data, there is no major damage detected
once we apply multiadaBN; this suggests multiadaBN is not effective for improving F1 scores of categories that perform
poorly when the baseline is tested on IID data.

5.4 The amount of negative imagery appears to affect localization scores

When tested with the model with the most damage, the tornado, water, and fire test sets had average localization
F1 scores of 0.7377, 0.6326, and 0.6096 respectively. The tornado dataset, which exhibited the highest building to
background ratio (see Table 3), had the highest localization score while the fire data, which exhibited the lowest building
to background ratio, scored the lowest. The water test set had a higher background to building ratio than the fire dataset
but only performed slightly better. We hypothesize this is because the tornado dataset consists of relatively evenly
distributed buildings while the water disaster dataset consists of unevenly and densely distributed buildings; the former
is easier to localize by hand. In addition, the tornados all happened in the US, like the majority of the samples in the
training dataset, while the water disasters occurred in Asia and the fire disasters in Europe or Australia, where the
terrain and building architecture are different.

We see a drop in localization score when we use the model trained with the balanced dataset on the fire test data.
Compared to the more damaged dataset, a higher percentage of the more balanced dataset consists of buildings. With
the more balanced dataset, we see a much higher percentage of buildings being misclassified as background (recall).
This is because a model trained on a dataset with more buildings may have a harder time detecting small and sparsely
distributed buildings, like those in the fire test data.

5.5 The generalization gaps give a different perspective on whether the transfer learning techniques were
effective

Given a specific model, the generalization gap is the difference between the models’ IID and OOD F1 scores. From this
perspective, the model with both multiadaBN and SWA performed better than the other models in all but one scenario
(most damaged training set, fire test set), in which the model with SWA performed the best. We also observe that in all
but one scenario, SWA decreases the generalization gap and in all but one scenario, multiadaBN increases it. See Table
6 for details.

6 Conclusions and Future Work

Due to discrepancies in performance across the disaster types and training sets, we are unable to form a conclusive
statement about the overall efficacy of multiadaBN or SWA. While multiadaBN and SWA appeared to improve F1
scores for the tornado data, the baseline performed the best for the water damage data while the SWA only model
performed best for the fire damage test data. A small training set appears to hinder classification of major and minor
damage, a problem that multiadaBN exacerbates. In fact, none of the models with multiadaBN applied were able to
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classify major damage. On the other hand, the generalization gaps, which provide a different perspective of model
performance compared to total F1 score, suggest the model with both SWA and multiadaBN outperforms other models
in most scenarios tested. Exploring these transfer learning techniques on various subsets of the xView2 dataset has
provided us with lessons we can use while creating tools for BDA, a scenario in which training datasets are scarce.

In order to improve our analysis, the data imbalance problem should be addressed: since buildings with minor and major
damage are underrepresented in the training data, all models struggle to classify them. The data imbalance problem
is common with smaller datasets one might be more likely to work with in the real world. The fact that multiadaBN
decreases a model’s ability to classify major or minor data may depend on the fact that major and minor damage F1
scores are universally low due to data imbalance.

Transfer learning applied to satellite imagery is not yet common, despite the humanitarian benefits of developing
such techniques. On the other hand, there is abundant literature on applying transfer learning techniques for image
segmentation of cityscapes using synthetic datasets, which are much easier to label. For example, the VisDA challenge
in 2017 had an image segmentation track, which asked participants to use a model pretrained with the Grand Theft Auto
5 (GTAV) dataset to perform image segmentation on dashcam data (https://ai.bu.edu/visda-2017/). Drawing inspiration
from using synthetic data from GTAV to segment real world data, one could use satellite imagery from the GTAV
video game to localize satellite imagery, and possibly even classify damage, since fire damage is common in GTAV.
Alternatively, one could adapt the transfer learning methods developed by participants of the VisDA challenge to create
models for satellite imagery.

Lastly, although there exist transfer learning surveys for image classification (Zhuang et al), a comprehensive transfer
learning survey for semantic segmentation would be helpful due to the large volume of literature available specifically
for the GTAV/Cityscapes transfer learning problem. A comparison of the performance of various models, and analysis
of which transfer learning methods are helpful in a certain scenario, would especially be helpful.
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SWA 0.4353 0.3073 0.7340 0.3566 0.08186 0.1277 0.6629
(tornado)

Multi adaBN 0.4413 0.3211 0.7218 0.4179 0.1036 0 0.7630
(tornado)

Multi adaBN + SWA 0.4610 0.3368 0.7504 0.4515 0.1281 0 0.7683
(tornado)
Baseline 0.3288 0.2012 0.6266 0.5452 0.1297 0.06262 0.06726
(water)
SWA 0.3109 0.1876 0.5987 0.5452 0.09390 0.03066 0.0805

(water)
Multi adaBN 0.3190 0.1799 0.6437 0.5222 0.03833 0 0.1591

(water)
Multi adaBN + SWA 0.3274 0.1842 0.6615 0.5143 0.05441 0 0.1682

(water)
Baseline 0.4461 0.3719 0.6192 0.7043 0.1398 0.01572 0.6276

(fire)
SWA 0.4589 0.3638 0.5890 0.6807 0.1491 0.01591 0.6094
(fire)

Multi adaBN 0.4049 0.3167 0.6106 0.7050 0.03158 0 0.5300
(fire)

Multi adaBN + SWA 0.4136 0.3253 0.6196 0.7036 0.0538 0 0.5458
(fire)
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Table 8: F1 Scores for models trained with the most damaged training set

Model Total F1 Damage F1 Loc F1 No Minor Major Destroyed F1
damage F1 Damage F1 Damage F1

Baseline xV2: 0.2237 xV2: 0.05423 0.6192 0.7043 0.1398 0.01572 0.6276
(ood) Avg F1: 0.4461 Avg F1: 0.3719
SWA xV2: 0.2152 xV2: 0.05505 0.589 0.6807 0.1491 0.01591 0.6094
(ood) Avg F1: 0.4589 Avg F1: 0.3638

Multi adaBN xV2: 0.1832 xV2: 4.0*10-6 0.6106 0.705 0.03158 0 0.53
(ood) Avg F1: 0.4049 Avg F1: 0.3167

Multi adaBN + SWA xV2: 0.1859 xV2: 4.0*10-6 0.6196 0.7036 0.0538 0 0.5458
(ood) Avg F1: 0.4136 Avg F1: 0.3253

Baseline xV2: 0.2584 xV2: 0.02656 0.7993 0.7938 0.00979 0.02173 0.8812
(iid) Avg F1: 0.5384 Avg F1: 0.4266
SWA xV2: 0.2531 xV2: 0.02112 0.7941 0.7611 0.01115 0.01036 0.88
(iid) Avg F1: 0.5292 Avg F1: 0.4157

Multi adaBN xV2: 0.2342 xV2: 4.0 *10-6 0.7807 0.756 0.191 0 0.877
(iid) Avg F1: 0.5534 Avg F1: 0.4560

Multi adaBN + SWA xV2: 0.2350 xV2: 4.0*10-6 0.7834 0.7436 0.08386 0 0.8707
(iid) Avg F1: 0.5322 Avg F1: 0.4245

Table 9: F1 scores for models trained with the balanced dataset.

Model Total F1 Damage F1 Loc F1 No Minor Major Destroyed F1
damage F1 Damage F1 Damage F1

Multi adaBN ONLY xV2: 0.1499 xV2: 4.0*10-6 0.4995 0.5783 0.001402 0 0.6483
(ood) Avg F1: 0.3648 Avg F1: 0.3070

Multi adaBN + SWA xV2: 0.1365 xV2: 4.0*10-6 0.4552 0.7705 0.09085 0 0.7188
(ood) Avg F1: 0.4131 Avg F1: 0.3950

No SWA or multi adaBN xV2: 0.1072 xV2: 4.0*10-6 0.3573 0.6043 0.1581 0 0.6624
(ood) Avg F1: 0.3565 Avg F1: 0.3562

SWA ONLY xV2: 0.1283 xV2: 4.0*10-6 0.4276 0.6537 0.1316 0 0.655
(ood) Avg F1: 0.3804 Avg F1: 0.3601

multi adaBN ONLY xV2: 0.1959 xV2: 4.0*10-6 0.6531 0.6633 0.176 0 0.8981
(iid) Avg F1: 0.5000 Avg F1: 0.4344

Multi adaBN + SWA xV2: 0.1925 xV2: 4.0*10-6 0.6415 0.6089 0.01137 0 0.8928
(iid) Avg F1: 0.4573 Avg F1: 0.3783

No SWA or multi adaBN xV2: 0.2114 xV2: 2.0*10-6 0.7046 0.6521 0 0 0.8936
(iid) Avg F1: 0.4819 Avg F1: 0.3864

SWA ONLY xV2: 0.2071 xV2: 2.0*10-6 0.6901 0.6504 0 0 0.9003
(iid) Avg F1: 0.4784 Avg F1: 0.3877

Table 10: Confusion matrix localization data for two sets of training data

True Negative False Negative True Positive False Positive Recall Precision
No multiadaBN, no SWA, 0.95 0.013 0.022 0.014 62.85% 61.11%

most damaged
No multiadaBN, no SWA, 0.89 0.072 0.023 0.012 24.21% 65.71%

balanced
SWA, most damaged 0.95 0.012 0.02 0.016 62.50% 55.56%

SWA, balanced 0.91 0.054 0.024 0.011 30.77% 68.57%
multiadaBN, most damaged 0.95 0.0099 0.02 0.016 66.89% 55.56%

multiadaBN, balanced 0.9 0.066 0.03 0.0056 31.25% 84.27%
multiadaBN + SWA, most damage 0.96 0.0084 0.02 0.016 70.42% 55.56%

multiadaBN + SWA, balanced 0.92 0.048 0.028 0.0079 36.84% 77.99%
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