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Abstract. We answer a question of Freedman and Krushkal, producing filling
links in any closed, orientable 3–manifold. The links we construct are hyper-
bolic, and have large essential systole, contrasting earlier geometric constraints
on hyperbolic links in 3–manifolds due to Adams and Reid and Lakeland and
the first author.

1. Introduction

Given a closed 3–manifold, M , a 1–spine for M (also called a carrier graph)
is a graph Γ with rankpπ1pΓqq “ rankpπ1pMqq and map f : Γ Ñ M such that
f˚ : π1pΓq Ñ π1pMq is surjective. Given a link L Ă M , let i : M ∖L Ñ M be the
inclusion. We say that f : Γ Ñ M∖L is an L–relative 1–spine if i ˝ f : Γ Ñ M is a
1–spine. We say that L is a filling link if for every L–relative 1–spine f : Γ Ñ M∖L,
we have

f˚ : π1pΓq Ñ π1pM∖Lq

is injective. This paper is motivated by the following.

Question 1.1 (Freedman-Krushkal [FK23]). Does every closed 3–manifold contain
a filling link?

In the appendix to [FK23], the first author and Reid answered this question
affirmatively for a closed, orientable 3–manifold M for which the rank of π1pMq

is 2. Following this, Stagner proved that the answer is also yes when π1pMq has
rank 3 [Sta21]. In this paper, we answer the question affirmatively for an arbitrary
closed, orientable 3–manifold.

Theorem 1.2. Every closed, orientable 3–manifold M contains a filling link.

The filling links L Ă M we construct to prove Theorem 1.2 are hyperbolic; that is,
M∖L admits a complete hyperbolic structure (which is unique by Mostow-Prasad
Rigidity [Mos73, Pra73]). The idea is to find a hyperbolic link L so that for any
L–relative 1–spine f : Γ Ñ M∖L and any basis for π1pΓq, the f˚–image of the basis
elements have large translation length; hyperbolic geometry then forces f˚ to be
injective.

The intuition for this construction comes from the work of White [Whi02] and
independently Kapovich and Weidmann [KW03] (see below). Recall that the sys-
tole of a hyperbolic 3–manifold is the length of the shortest closed geodesic. White
proved that the systole of a closed hyperbolic 3–manifold M is bounded by a func-
tion of the rank of its fundamental group. His proof involves analyzing 1–spines
f : Γ Ñ M of minimal length, and then showing that if the systole is sufficiently
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large, then f˚ must be injective, contradicting the fact it is a 1–spine of a closed hy-
perbolic 3–manifold. For more on probing the geometry of hyperbolic 3–manifolds
via their 1–spines, see [BCW04,Bir09,BS11], for example.

The first guess for constructing the required links to prove Theorem 1.2 might
thus be to find hyperbolic links L Ă M such that the systole of M∖L is sufficiently
large. This runs into a theorem of Adams and Reid [AR00] which states that any
hyperbolic link in a closed, non-hyperbolic 3–manifold has systole bounded above
by 7.35534.... This precise strategy even fails for closed hyperbolic 3–manifolds by
a theorem of Lakeland and the first author [LL14], which bounds the length of the
systole of hyperbolic link complement by a function of the volume of the original
closed hyperbolic manifold.

The short closed geodesics which are used to illustrate the uniform upper bound
on systoles in both [AR00] and [LL14] are typically null-homotopic in the 3–
manifold. This hints at a more refined notion of systoles for hyperbolic links.
Specifically, if L Ă M is a hyperbolic link, we define the essential systole of L to be

esssyspLq “ inftℓpγq | γ is a loop in M∖L with i ˝ γ non-null-homotopic in Mu

Remark 1.3. As a consequence of our definition, observe that if esssyspLq ą 0,
then every parabolic element of π1pM∖Lq is necessarily in the kernel of the induced
map i˚ : π1pM ∖Lq Ñ π1pMq from inclusion, since such an element is represented
by loops with arbitrarily small length.

White’s theorem can be seen as a consequence of a theorem of Kapovich and Wei-
dmann [KW03], which appeared at roughly the same time as White’s paper [Whi02].
We appeal to this result of Kapovich and Weidmann (stated as Theorem 2.2 below),
and easily deduce the following.

Theorem 1.4. Given n ą 0, there exists R ą 0 so that if M is a closed 3 manifold
with rankpπ1pMqq “ n, and L Ă M is a hyperbolic link with esssyspLq ą R, then L
is a filling link.

Theorem 1.4 thus reduces the problem of finding filling links to the problem
of finding hyperbolic links with large essential systole. We do this by an explicit
construction, proving the following.

Theorem 1.5. Given a closed, orientable 3–manifold M with rankpπ1pMqq ě 1
and r ą 0, there exists a hyperbolic link L Ă M such that

esssyspLq ą r.

Theorem 1.2 is now an easy consequence of these two theorems.

Proof of Theorem 1.2 assuming Theorems 1.4 and 1.5. Suppose rankpπ1pMqq “ n
and let R ą 0 be as in Theorem 1.4. By Theorem 1.5, there exists a link L Ă M
so that esssyspLq ą R, which is thus filling by Theorem 1.4. □

Outline of the paper and sketch of the proof. In Section 2 we recall some ba-
sics about Nielsen equivalence, §2.1, and hyperbolic geometry, §2.2, then conclude
by proving Theorem 1.4 in §2.3. The remainder of the paper, Section 3 contains
the construction of links with large essential systole. The first step is to construct
a triangulation of our arbitrary closed manifold M with controlled local proper-
ties, but large combinatorial systole, following a construction due to Cooper and
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Thurston [CT88]; see §3.1. Next, in §3.2, we explicitly construct a tangle in a tetra-
hedron whose complement admits a nice hyperbolic structure with totally geodesic
boundary and dihedral angles equal to π

2 . This tangle serves as the building block
for the link with large essential systole that we construct in §3.3. Specifically, start-
ing with the triangulation τ of a closed 3–manifold M constructed in §3.1 having
large combinatorial systole, we delete the tangle from each tetrahedron. The result-
ing link Lτ has an explicit, complete CATp´1q metric, and hence admits a complete
hyperbolic metric by Thurston’s Hyperbolization Theorem [Thu86]. While we do
not have explicit control over the hyperbolic metric, we use the CATp´1q metric
to analyze a family of surfaces with bounded Euler characteristic which serve as
“barriers” to accessing the tetrahedra. We show that having large combinatorial
systole implies any loop γ in M ∖Lτ which is non-null-homotopic in M must in-
tersect many tetrahedra, and hence many of the surfaces. Every intersection of γ
with one of the surfaces passes through a point with bounded injectivity radius,
and separation properties of the surfaces imply that γ must pass through many
such distinct points, and is therefore long.
Remark 1.6. Because Kapovich-Weidmann work in the setting of arbitrary δ–
hyperbolic spaces, we could avoid using Thurston’s Hyperbolization Theorem to prove
that the links we construct are filling, and shorten the argument a little bit; see
Section 4. Theorem 1.5 seems independently interesting due to its contrast with the
results of [AR00] and [LL14], so we kept the slightly longer proof.

Acknowledgements. The authors would like to thank Alan Reid for helpful
conversations, including the reference to [Sar18] mentioned at the end of the paper.
The first author is particularly grateful for his collaboration with Reid on the
appendix of [FK23] and the discussions during that time regarding filling links
that have influenced this paper.

2. Hyperbolic geometry and large essential systole

The goal of this section is to prove the following.
Theorem 1.4 Given n ą 0, there exists R ą 0 so that if M is a closed 3 manifold
with rankpπ1pMqq “ n, and L Ă M is a hyperbolic link with esssyspLq ą R, then L
is a filling link.

2.1. Nielsen equivalence. Nielsen transformations were originally introduced by
Nielsen in [Nie24] to prove that every subgroup of a finitely generated free group is
free. Since then, they have been used extensively to study properties of free groups
(see [FRS95]). In this section, we recall basic notions from [Nie24].
Definition 1 (Nielsen Equivalence). Let G be a group, and consider an n–tuple
of elements, M “ pg1, g2, g3, ..., gnq P Gn. Define the following elementary Nielsen
moves on M :

(1) For some 1 ď i ď n, replace gi with g´1
i in M ;

(2) For i ‰ j, 1 ď i, j ď n, replace gi with gigj in M ;
(3) For i ‰ j, 1 ď i, j ď n, interchange gi and gj in M .

A Nielsen transformation is a finite sequence of elementary Nielsen moves. We
say that M, M 1 P Gn are Nielsen equivalent, denoted M „N M 1, if they differ by a
Nielsen transformation.
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Recall that the basis of a finite rank free group is a minimal collection of genera-
tors of Fn. In [Nie24], Nielsen showed that if G is a finite rank free group, then the
set of Nielsen transformations on a basis generates AutpGq. The following lemma
is immediate.

Lemma 2.1. Let ϕ P HompFn, Gq, where Fn is a finite rank free group. Given a
basis tb1, b2, . . . , bnu of Fn, let ci “ ϕpbiq (1 ď i ď n), and let L1 “ pc1, c2, . . . , cnq P

Gn. Let L2 “ pc1
1, c1

2, . . . , c1
nq P Gn such that L1 „N L2. Then there exists

tb1
1, b1

2, ..., b1
nu, a basis for Fn, such that ϕpb1

iq “ c1
i for all 1 ď i ď n.

Proof. Note that ci “ ϕpbiq implies that c´1
i “ ϕpb´1

i q and cicj “ ϕpbibjq. Thus,
if L1 “ pc1, c2, . . . , cnq and L2 “ pc1

1, c1
2, . . . , c1

nq differs from L1 by a Nielsen trans-
formation, then we can lift the Nielsen transformation to pb1, . . . , bnq to produce
pb1

1, b1
2, . . . , b1

nq so that ϕpb1
iq “ c1

i for all i. The resulting tuple pb1
1, b1

2, . . . , b1
nq differs

from pb1, b2, . . . , bnq by a Nielsen transformation, which is an element of AutpFnq.
Therefore pb1

1, b1
2, . . . , b1

nq is also a basis of Fn. □

2.2. Hyperbolic space. In this section, we recall basic facts about hyperbolic
space which will be useful in the proof of Theorem 1.4. See, for example, Chapter
2 of [Thu97].

We consider the upper-half space model of hyperbolic 3-space,

H3 “
␣

px1, x2, x3q P R3 : xn ą 0
(

endowed with the Riemannian metric dx2
1`dx2

2`dx2
3

x2
3

. We let ρ denote the associ-
ated distance function. The group of orientation-preserving isometries of pH3, ρq is
PSL2pCq, the set of 2ˆ2 matrices with determinant 1 and complex entries, modulo
t˘Iu. The action is by conformal extension of linear fractional transformations on
the px1, x2q–plane, viewed as C. A hyperbolic 3-manifold is the quotient of H3 by
a discrete, torsion-free subgroup of PSL2pCq.

Recall that a geodesic metric space, X, is δ-hyperbolic if for any x, y, z P X, the
geodesic segment rx, ys lies in the δ-neighborhood of the union of geodesic segments
rx, zs Y ry, zs. In other words, all triangles in X are δ-thin.

Since δ-hyperbolic spaces are modeled on hyperbolic space, H3 is a classic exam-
ple of a δ-hyperbolic space. To see this, it suffices to consider a triangle in the upper
half plane H2 obtained by restricting ρ to the subspace with x1 “ 0. Triangles in
H2 have area π ´α´β ´γ, where α, β, and γ are the interior angles of the triangle.
The maximum area of a triangle in H2 is π, which is realized by an ideal triangle
with vertices at ´1, 1, and 8, for example. Note that δ is the distance between i
and the geodesic x2 “ 1. This distance is bounded above by the distance between
i and 1 ` i, which is ln

´

1?
2

¯

ă 1. So we can set δ “ 1 to be a δ-hyperbolicity
constant for H3.

2.3. Large essential systole implies filling. We will deduce Theorem 1.4 from
a general theorem of Kapovich-Weidmann from [KW03] about actions on Gromov
hyperbolic spaces (whose origins they attribute to Gromov). We will only need to
apply their result in the case that the Gromov hyperbolic space is H3, and will not
need the full strength of their conclusion. We therefore state only the form we will
need, but emphasize that their result is more general and has a stronger conclusion.
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Theorem 2.2 ( [KW03]). For any integer n ą 0, there exist a constant Cpnq with
the following property. Suppose a group

G “ xg1, . . . , gny ă PSL2pCq

Then one of the following holds:
(1) The group G is free with basis pg1, . . . , gnq, or
(2) The n-tuple pg1, . . . , gnq is Nielsen equivalent to pg1

1, . . . , g1
nq and there exists

y P H3 with ρpg1
1 ¨ y, yq ă Cpnq.

In other words, if G acts by isometries on H3, then G is either free or contains
a nontrivial element with small translation length. We are now ready to prove
Theorem 1.4.

Proof of Theorem 1.4. Suppose M is a closed 3–manifold with rankpπ1pMqq “ n,
and suppose L Ă M is a hyperbolic link with esssyspLq ě Cpnq, from Theorem 2.2.
Now let

f : Γ Ñ M∖L

be an L-relative 1-spine. Choose any basis ph1, . . . , hnq for π1pΓq, and we write
gj “ f˚phjq, for each j. By Theorem 2.2

xg1, . . . , gny “ f˚pπ1pΓqq

is free with basis pg1, . . . , gnq, or pg1, . . . , gnq is Nielsen equivalent to pg1
1, . . . , g1

nq so
that for some y P H3, we have ρpg1

1 ¨ y, yq ă Cpnq. First, we suppose we are in the
latter case and derive a contradiction.

Let i : M∖L Ñ M be the inclusion, and note that i˚pg1
1q is necessarily trivial in

π1pMq since it represents a loop with length less than esssyspLq. By Lemma 2.1,
the Nielsen moves on pg1, . . . , gnq lift to Nielsen moves on ph1, . . . , hnq, producing
a new basis ph1

1, . . . , h1
nq of π1pΓq so that f˚ph1

jq “ g1
j . Since

pi ˝ fq˚ph1
1q “ i˚pf˚ph1qq “ i˚pg1

1q,

we see that
π1pMq “ i˚pf˚pπ1pΓqqq “ xi˚pg1

1q, . . . , i˚pg1
nqqy “ xi˚pg1

2q, . . . , i˚pg1
nqqy,

contradicting the fact that rankpπ1pMqq “ n.
Therefore, f˚pπ1pΓqq is free on pg1, . . . , gnq, and hence f˚ is injective by the

Hopfian property of free groups. Since f : Γ Ñ M ∖L was an arbitrary L–relative
1–spine, it follows that L is a filling link. □

3. Links with large essential systole

The goal of this section is to prove the following.
Theorem 1.5 Given a closed, orientable 3–manifold M with rankpπ1pMqq ě 1 and
r ą 0, there exists a hyperbolic link L Ă M such that

esssyspLq ą r.

The proof involves constructing a particular tangle in a tetrahedron which, when
removed from the tetrahedra (3–simplices) of a triangulation of a 3–manifold, pro-
duces a link. We apply this construction to a particularly nice kind of triangulation
on M , and show that the resulting link is hyperbolic, and furthermore, if the “com-
binatorial systole” of the triangulation is large, then the essential systole of the link
is large.
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3.1. Triangulations. Suppose M is a closed 3–manifold, and τ is a triangulation of
M . Let τ̂ denote the subgraph of the 1–skeleton of the first barycentric subdivision
of τ which is the union of 1–simplices adjacent to barycenters vT of the tetrahedra
T of τ . The graph τ̂ is bipartite, with the barycenters of tetrahedra one color and
all other vertices the second color. We equip τ̂ with the usual graph metric which
assigns length 1 to each edges. Then for every two tetrahedra T and T 1 of τ , the
distance between vT and vT 1 is 2 if and only if T and T 1 are distinct and share a
vertex, edge, or face.

We define the combinatorial systole of τ̂ to be:
combsyspτ̂q “ mintℓτ̂ pγq : γ a loop in τ̂ which is not nullhomotopic in Mu.

We will ultimately be interested in manifolds with triangulations with large com-
binatorial systole. The main consequence of this for our purposes is the following.

Lemma 3.1. If τ is any triangulation of a closed 3–manifold M , then any non-
null-homotopic loop in M has non-empty intersection with least n “ t

combsyspτ̂q

16 u

tetrahedra, T0, . . . , Tn´1 of τ such that vTi
and vTj

are distance at least 8 apart for
all i ‰ j.

Proof. First observe that we may homotope γ so that it is a combinatorial loop in
the graph τ̂ meeting the exact same set of tetrahedra. We will find the required
tetrahedra from those whose barycenters are vertices of γ.

First observe that for the closed ball in τ̂ of radius R “ t
combsyspτ̂q

2 u ´ 2 centered
at any vertex of τ̂ , the inclusion of this ball into M must be trivial on π1. To
see this, observe that there is a maximal tree so that every point is connected to
the center of the ball by a path of length at most R in the tree, and hence the
fundamental group is generated by loops of length at most 2R ` 1 ă combsyspτ̂q.
These loops are all trivial by definition of the combinatorial systole, so the image
of the fundamental group of the ball is trivial.

Now pick any vertex vT0 on γ which is the barycenter of a tetrahedron T0 and
let n be as in the lemma. Since γ is non-null-homotopic in M , it follows that it is
not contained in the closed ball of radius

8pn ´ 1q “ 8
Z

combsyspτ̂q

16

^

´ 8 ă R.

In particular, γ nontrivially intersects the spheres of radius 8k centered at vT0 ,
where k “ 0, . . . , n ´ 1, and we let vk P γ be any vertex of intersection. Since we
are considering spheres of even radius, and a vertex in τ̂ whose distance from vT0 is
even must also be a barycenter of a tetrahedron, it follows that vk “ vTk

for some
tetrahedron Tk for each k. By construction, for all i and j, vTi and vTj are distance
at least 8|j ´ i| apart, proving the lemma. □

We are interested in triangulations with large combinatorial systole to which
we can apply the previous lemma. We will also want to impose some additional
control on the local structure of our triangulations. This additional control can be
described by constraints on the links of vertices, which we now describe.

A Cooper-Thurston triangulation τ of a 3–manifold is one for which the link
of every vertex is isomorphic to the double over the boundary of one of the five
triangulations of a disk shown in Figure 1. In [CT88], Cooper and Thurston proved
that such triangulations exist. A minor modification of their construction proves
the next proposition.
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Figure 1. The five allowable triangulations of links of vertices are
obtained by doubling each of these triangulations of a disk.

Proposition 3.2. Suppose M is a closed, orientable 3–manifold M and r ą 0.
Then M admits a Cooper-Thurston triangulation τ with combsyspτ̂q ą r.

Proof. Cooper and Thurston’s proof starts with a paving of M , which is a sub-
division of M into 3–dimensional cubes so that two such cubes either meet at a
vertex, edge, or face, or are disjoint. Given an edge e in a cube, the degree of e
is the number of cubes that have e as an edge. Cooper and Thurston prove there
exists a paving of M so that each edge has degree 3, 4, or 5, and the degree 3 and
5 edges form disjoint embedded 1-manifolds. They then triangulate each cube to
ensure the correct links (see Figure 2). Note that the triangulation of each cube
consists of three kinds of edges: the purple edges, which connect a vertex of the
cube to the centers of the three faces in which the vertex is contained; the blue
edges, which connect the vertices of the cube to the center of the cube; and the
red edges, which connect the center of a face to the center of the cube. Since the
resulting triangulation τ depends on the paving P of M , we will denote it τpP q.
As before, τ̂pP q will be the graph associated with τpP q equipped with the length
function ℓτ̂pP q induced by the usual graph metric.

Cooper and Thurston show there is a paving P of M so that the triangulation of
each cube as above results in an honest triangulation τpP q. For any integer k ě 1,
we can subdivide each cube of P into k3 sub-cubes, producing a new paving Pk.
Triangulating each of the sub-cubes as above results in another Cooper-Thurston
triangulation of M . (In fact, the construction in [CT88] has such a subdivision of the
paving built into it.) We will show that for any r ą 0, we can choose some kprq ą 0
sufficiently large so that for the paving Pkprq, we have combsys

`

τ̂pPkprqq
˘

ą r.
Given a paving P for which τpP q is a Cooper-Thurston triangulation, we can

define a singular, locally Euclidean geodesic metric on M in which each cube of P
is (locally) isometric to a unit cube in R3; that is, a cube where all side lengths
equal 1. For any path α in M , we write ℓP pαq to denote its length in this metric,
due to its dependence on P .

Since each edge e of τ̂pP q is a path in M , we can measure its length, ℓP peq. Here
we derive an upper bound on ℓP peq for any edge e of τ̂pP q. For this, we assume the
cube is embedded in R3 with vertices at the points

tpε1, ε2, ε3q | εi P t0, 1u for i “ 1, 2, 3u.
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Figure 2. An illustration of the Cooper-Thurston triangulation
on a single cube. The cube is triangulated by 24 tetrahedra, two
of which are shown in orange.

Then the center of C is
` 1

2 , 1
2 , 1

2
˘

, and the center of one of the faces is
` 1

2 , 0, 1
2
˘

. One
then obtains that the barycenter of the tetrahedon T with vertex set

"

p0, 0, 0q, p0, 0, 1q,

ˆ

1
2 , 0,

1
2

˙

,

ˆ

1
2 ,

1
2 ,

1
2

˙*

is
` 1

4 , 1
8 , 1

2
˘

. We then have that the maximum distance between a vertex of T and
` 1

4 , 1
8 , 1

2
˘

is equal to
?

21
8 , which is an upper bound for the edge lengths of τ̂pP q.

When every cube C in a paving P is subdivided into k3 cubes to produce the
new paving Pk, for any curve γ, ℓPk

pγq “ kℓP pγq. We can see this most clearly
when γ is an edge of C. In the new metric, sC , an edge of C, will pass through k
cubes each of side length equal to 1 “ ℓP psCq, so ℓPk

psCq “ k “ kℓP psCq.
Consider any paving P so that τpP q is a Cooper-Thurston triangulation, as

before. Let γ be a non-null-homotopic curve in M which minimizes ℓP pγq among
all such closed curves γ. Find kprq so that the paving Pkprq obtained by subdividing
each cube in P into pkprqq3 cubes will yield ℓPkprq

pγq ą r, which is made possible by
the discussion in the previous paragraph. Observe that γ will still minimize length
among non-null-homotopic curves with respect to the new metric induced by Pkprq,
as the new metric is the old metric scaled by a factor of kprq.

Consider the combinatorial systole of τ̂pPkprqq, which we will call γ1. Note that
for each edge e P γ1, ℓPkprq

peq ď
?

21
8 by construction. Thus,

combsyspτ̂pPkprqqq “ ℓτ̂pPkprqqpγ1q “ p# of edges in γ1qp1q

ě p# of edges in γ1q

ˆ

?
21
8

˙

ě
ÿ

ePγ1

ℓPkprq
peq ě ℓPkprq

pγ1q

ě ℓPkprq
pγq ą r.
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The second to last inequality follows since γ minimized length over all non-null-
homotopic curves, and γ1 is non-null-homotopic. □

We will also need the following, which is immediate by inspecting Figure 1.

Lemma 3.3. Suppose τ is a Cooper-Thurston triangulation of a closed 3–manifold
M . Then every link of a vertex is flag, and every edge has degree 4, 6, 8, or 10. □

Remark 3.4. Brady-McCammond-Meier [BMM04] describe another construction
of triangulations with related bounds on the combinatorics. It seems likely that the
barycentric subdivisions of these triangulations could also be made to work for our
purposes below, but constructing Cooper-Thurston triangulations with large combi-
natorial systole is likely easier.

3.2. A hyperbolic tetrahedron tangle. Let T0 be a tetrahedron and L0 Ă T0
be the tangle in T0, which is the union of the four embedded circles and properly
embedded arcs shown on the left in Figure 3. Explicitly, we assume T0 is a regular,
Euclidean tetrahedron with side lengths 1 and

(1) each circle has radius 1{4 and is centered at the barycenter of the face,
bounding a disk, and

(2) each arc is the intersection with T0 of a circle of radius 1{8 centered on the
barycenter of an edge and contained in a plane orthogonal to the edge.

From the assumptions, the tangle meets each face as shown on the right in Figure 3,
and the endpoints of the arcs are inside the disks bounded by the circles in the faces.

Remark 3.5. Our use of the term “tangle” may be slightly non-standard, but we
will only use it in reference to the specific embedded 1–manifold in T0.

Figure 3. Left: The tangle L0 Ă T0. Right: The intersection of
L0 with the face.

By construction, the full symmetry group Tet – S4 of T0 acts on T0 by isometries
preserving L0. We can take a fundamental domain, ∆, in T0 for Tet to be (any)
2–simplex of the first barycentric subdivision of T0, and L0 meets ∆ in a pair of
arcs contained in a pair of sides. The fundamental domain ∆ and pair of arcs are
illustrated in Figure 4.
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3

2

1

0

Figure 4. The fundamental domain in T0 for the action of Tet.
The vertices are barycenters of a vertex, edge, face, and of T0, and
are labeled here by 0, 1, 2, and 3, respectively.

We consider T0∖L0 as a manifold with corners. The corners are at the 1–skeleton
of T0, and the boundary consists of the union of the faces minus L0, which are each
thus homeomorphic to a 2–simplex minus a circle and three points in the disk
bounded by the circle, as on the right in Figure 3.

Proposition 3.6. There is a complete hyperbolic structure on T0 ∖L0 of finite
volume, such that all boundary components are totally geodesic and all dihedral
angles at the corners are π

2 .

Proof. We construct a hyperbolic structure on the fundamental domain ∆∖L0
explicitly. To do this, we we will find a complete, finite volume hyperbolic structure
on ∆∖L0 with totally geodesic boundary, whose dihedral angles along the corners
are as illustrated on the left of Figure 5. By collapsing the two arcs to points, it
suffices to find a partially ideal hyperbolic polyhedron as illustrated on the right of
Figure 5, where the two “dots” are ideal (hence deleted).

–

π
2

π
2

π
2

π
3

π
4

π
3 π

2

π
2

π
2

π
2

π
2 π

2

π
2

π
3

π
4

π
3

Figure 5. Left: Dihedral angles for hyperbolic structure on
∆∖L0. Right: Partially ideal polyhedron P with ideal vertices
obtained by collapsing arcs to a point (illustrated by a dot).

We can construct such a polyhedron P Ă H3 explicitly as the intersection of
hyperbolic half-spaces in the upper half space model H3 “ tpx, y, zq | z ą 0u.
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In these coordinates, the polyhedron is given by the set of points px, y, zq P H3

satisfying
(1) 0 ď x ď 3 ` 3

?
2

2 ,
(2) 0 ď y ď 1 `

?
2

2 ,
(3) x2 ` py ´ 1q2 ` z2 ě 1, and
(4) px ´ p2 `

?
2qq2 ` y2 ` z2 ě p2 `

?
2q2.

One ideal vertex is at 8 and the other is at p0, 0, 0q. Figure 6 shows the polyhedron
viewed from the vertex at infinity.

Figure 6. View of P Ă H3 from above.

The hyperbolic half-spaces are bounded by hyperbolic planes that meet the
sphere at infinity in four lines and two circles. The equations defining these lines
and circles are obtained by making the inequalities above into equations, and set-
ting z “ 0. One can directly check that the lines and circles intersect in the required
angles, and hence so do the hyperbolic planes. □

3.3. Construction of links and proof of Theorem 1.5. Given a triangulation
τ of a closed 3–manifold, assume that each simplex is regular Euclidean with side
length 1 and the face gluings are by isometries. The copies of L0 in each tetrahedron
match up to define a link we denote Lτ Ă M . That is, Lτ Ă M is a link such that
for every tetrahedron T in τ , the pair pT, Lτ X T q is homeomorphic to pT0, L0q.

The first fact we will need is the following.
Lemma 3.7. If τ is a Cooper-Thurston triangulation of M , then Lτ is a hyperbolic
link.
Proof. Fix the hyperbolic structure on T0∖L0 from Proposition 3.6. Then M∖Lτ

can be obtained by gluing copies of the hyperbolic structure on T0∖L0 by isometries
along the boundary, defining a finite volume, piecewise hyperbolic structure. Since
the dihedral angles of all corners are π

2 , and since the links of every vertex is flag, by
Lemma 3.3, it follows that the metric is locally CATp´1q; see [BH99]. Consequently,
the universal cover is CATp´1q. By Thurston’s Hyperbolization Theorem for (the
interiors of) compact manifolds with non-empty boundary, it follows that M ∖Lτ

is hyperbolic; see [Thu86,Mor84,McM92]. □

Continue to assume that τ is a Cooper-Thurston triangulation. We let Vτ , Eτ ,
Fτ , and Tτ denote the set of vertices, edges, faces, and tetrahedra of τ . We now
describe a canonical collection of surfaces Sτ associated to τ . This collection of
surfaces is indexed by Eτ \ Fτ \ Tτ , as follows:
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(1) For every F P Fτ , there is a disk ΣF bounded by the component of Lτ

embedded in F .
(2) For every E P Eτ , there is a component of Lτ that encircles E, built from

a subset of the arcs of Lτ intersected with the tetrahedra containing E.
(3) For every T P Tτ , there is a four–holed sphere ΣT which starts with the

boundary of T minus the interior of the four disks ΣF1 , . . . , ΣF4 contained
in the four faces F1, . . . , F4 of T and pushing it into T .

See Figure 7.

ΣF
F

ΣE

E

ΣT
T

Figure 7. Left: A face F of a tetrahedron and the associated
surface ΣF . Middle: An edge E of a tetrahedron, and the asso-
ciated surface ΣE . Right: The four-holed sphere ΣT associated
with a tetrahedron T . For clarity, Lτ is only partially shown in
the left and right figures.

Let Σ˝
x denote the intersection of Σx with M∖Lτ ,

Σ˝
x “ Σx X M∖Lτ

for all Σx P Sτ . We also write
S˝

τ “ tΣ˝
x | Σx P Sτ u.

By inspection, we see that each Σ˝
x P S˝

τ is a punctured sphere. More precisely, we
have the following.

(1) For every F P Fτ , Σ˝
F is a four-punctured sphere.

(2) For every E P Eτ , Σ˝
E is a pk ` 1q–punctured sphere, where k is the degree

of the edge E.
(3) For every T P Tτ , Σ˝

T is a four punctured sphere.
In particular, the number of punctures is uniformly bounded (at most 11) by
Lemma 3.3.

Remark 3.8. We emphasize that, except for x “ T , Σ˝
x is not the interior of Σx

since there are other components of Lτ that puncture Σx. We also note that the
surface Σx we have described naturally intersects Lτ minimally in the isotopy class,
rel BΣx (which can be seen by considerations of the algebraic intersection number,
for example).

We begin with some basic properties of these surfaces.
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Lemma 3.9. Suppose τ is a Cooper-Thurston triangulation. Then each Σ˝
x P S˝

τ

is totally geodesic in the locally CATp´1q metric on M ∖Lτ . In particular, each
such Σ˝

x is incompressible and quasi-Fuchsian in the hyperbolic structure.

Recall that a surface Σ with negative Euler characteristic which is properly
embedded in a 3-manifold M is incompressible if the inclusion i : Σ ãÑ M induces
an injective map between fundamental groups. An incompressible surface Σ in a
hyperbolic 3–manifold is quasi–Fuchsian if its fundamental group has a quasi-circle
as its limit set for the action on the sphere at infinity of H3.

Proof. We consider Σ˝
x for x P Eτ Y Fτ Y Tτ separately, depending on whether x is

an edge, face, or tetrahedron.
The statement is clear for x “ F P Fτ , by construction of the hyperbolic struc-

ture on T0∖L0. For x “ E P Eτ , note that if we just glue together the tetrahedra
around E, then there is an isometric involution fixing ΣE pointwise, and hence Σ˝

E

is totally geodesic in this union of tetrahedra, and hence in M∖Lτ (with the locally
CATp´1q metric).

For x “ T P Tτ , we observe that ΣT is entirely contained in T , so we may consider
the case of Σ˝

T0
Ă T0∖L0. First we note that Σ˝

T0
is incompressible: the boundary

of a compressing disk would necessarily subdivide the four-holed sphere into two
pairs of pants, and compressing would produce a pair of annuli between distinct
cusps, which is impossible. The orientation preserving subgroup Tet preserves (the
isotopy class of) Σ˝

T0
, and the quotient of Σ˝

T0
in T0 ∖L0 is an orbifold with one

puncture and two cone points of order 2 and 3. In particular, the orbifold must be
totally geodesic (c.f. [Ada85]), and hence Σ˝

T0
is totally geodesic.

Being totally geodesic in the locally CATp´1q metric implies that the surfaces
are incompressible. The universal covers of the surfaces are isometrically embedded
in the universal cover of M ∖Lτ with its CATp´1q metric. Since the identity on
the universal covers is a quasi-isometry with respect to the CATp´1q metric on
the domain and the hyperbolic metric on the range, it follows that the universal
covers of the surfaces are quasi-isometrically embedded in H3. In particular, their
limit sets are quasi-circles (c.f. [BH99, Theorem III.H.3.9]); hence, the surfaces are
quasi-Fuchsian. □

We record the following.

Corollary 3.10. The totally geodesic representatives of the surfaces in S˝
τ with

respect to the CATp´1q metric have the following property: For any two distinct
Σ˝

x, Σ˝
y P S˝

τ , either Σ˝
x and Σ˝

y are disjoint, or they cannot be isotoped to be disjoint
and tx, yu is a pair tE, F u with E Ă F or tE, T u with E Ă T . In the latter case,
the surfaces intersect in a single arc. □

This corollary asserts that the intersections of the totally geodesic surfaces in
CATp´1q metric in the isotopy classes of the surfaces in S˝

τ intersect in the “ob-
vious” way. We use these representatives to prove the next lemma. Before we do
so, we recall that an intersection point x of curve γ with a properly embedded
incompressible surface S Ă N in a hyperbolic 3–manifold N is essential if there is
a lift γ̃ : R Ñ H3 of γ to the universal cover of N that intersects a component rS
of the preimage of S in a single point x̃ that projects to x. If there is an essential
intersection point between γ and S, we say that they intersect essentially, and note
that in this case, γ and S cannot be homotoped to be disjoint.



14 CHRISTOPHER J LEININGER AND YANDI WU

Lemma 3.11. If γ is a loop in M∖Lτ which is non-null-homotopic in M , then γ

essentially intersects at least n “ t
combsyspτ̂q

16 u surfaces

Σ˝
x0

, . . . , Σ˝
xn´1

P S˝
τ .

Moreover, for all i ‰ j, the cusps of Σ˝
xi

and Σ˝
xj

are not contained in any common
cusps of M∖Lτ .

Proof. First observe that for each each surface Σ˝
x, the inclusion into M induces

the trivial homomorphism since it factors through the inclusion Σ˝
x Ñ Σx, and Σx

is either a disk or is contained in a tetrahedron of τ .
Suppose γ is a loop in M ∖Lτ which is non-null-homotopic in M (hence also

in M ∖Lτ ). From the previous paragraph, it follows that γ cannot be homotoped
to lie entirely inside any one of the surfaces Σ˝

x. Since each component of Lτ is
homotopically trivial in M , we see that γ is non-peripheral (i.e. not freely homotopic
into a cusp) in M∖Lτ . After a homotopy, we may therefore assume that γ is geodesic
with respect to the CATp´1q metric, and we do so.

We also assume that the isotopy class of Σ˝
x is represented by a totally geo-

desic surface with respect to the CATp´1q metric. Therefore γ intersects each Σ˝
x

transversely (possibly empty), and every intersection point is essential.
Given a tetrahedron T , consider the family of surfaces S˝

τ pT q consisting of sur-
faces Σ˝

x for which x is on of the following:
(1) A face of T ;
(2) An edge adjacent to a vertex of T ; or
(3) A tetrahedron T 1 with dτ̂ pvT , vT 1 q ď 2.

By inspection, the set of surfaces tΣx | Σ˝
x P S˝

τ pT qu have the property that
any component of the complement of their union which intersects T is contractible.
Thus, if γ intersects T , then it must have an essential intersection with some surface
in S˝

τ pT q.
Now Lemma 3.1 implies that γ intersects at least n tetrahedra T0, . . . , Tn´1

for which the barycenters vTi
and vTj

are distance at least 8 in τ̂ if i ‰ j. Let
Σ˝

xi
P S˝

τ pTiq be one of the surfaces essentially intersected by γ. The cusps of Σ˝
xi

are contained in cusps of M ∖Lτ that correspond to components of Lτ contained
in the union of tetrahedra T 1 with dτ̂ pvTi

, vT 1 q ď 2. Consequently, the cusps of
M ∖Lτ that contain the cusps of Σi and Σj are distinct if i ‰ j. This completes
the proof. □

We are now ready for the proof of the main theorem.

Theorem 1.5 Given a closed, orientable 3–manifold M with rankpπ1pMqq ě 1 and
r ą 0, there exists a hyperbolic link L Ă M such that

esssyspLq ą r.

Proof. By Proposition 3.2, there exists a sequence of Cooper-Thurston triangu-
lations τn such that combsyspτ̂nq ě 16n. The theorem is a consequence of the
following.

Claim. The essential systoles of Lτn
tend to infinity, or

lim
nÑ8

esssyspLτn
q “ 8.
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Proof. Let γn be closed geodesic in M∖Lτn
which is non-null-homotopic in M , and

which realizes the essential systole of Lτn . For each n consider the surfaces

Σ˝
0pnq, . . . , Σ˝

n´1pnq P S˝
τn

,

from Lemma 3.11 that essentially intersect γn. Since the surfaces in S˝
τn

are quasi-
Fuchsian, we may homotope each Σ˝

i pnq to a pleated surface; that is, the inclusion
is homotopic to a 1–Lipschitz map of a hyperbolic surface which is totally geodesic
in the complementary regions of a geodesic lamination (see [Thu97]). The geodesic
γn intersects each Σ˝

i pnq nontrivially in some point zipnq.
Now we assume ℓpγnq “ esssyspLτn

q does not tend to infinity with n and derive
a contradiction. This assumption implies that we may pass to a subsequence, and
re-index so that for some R ą 0 we have ℓpγnq ă R for all n.

Recall that for a hyperbolic manifold N and ϵ ą 0, the ϵ–thin part of N is the
set Np0,ϵq “ tx P N | injradpxq ă ϵu, and Nrϵ,8q “ tx P N | injradpxq ą ϵu is the
ϵ–thick part of N . By the Margulis Lemma, there is an ϵ0 (depending only on the
dimension of N) so that if ϵ ă ϵ0, then Np0,ϵq is a disjoint union of horoball cusp
regions and collar neighborhoods of geodesics of length less than 2ϵ. See [Thu97]
or [BP92] for more details. If N is a hyperbolic 3–manifold and ϵ ă ϵ0, then the
collars of closed geodesics in Np0,ϵq are called Margulis tubes. For a hyperbolic
surface, Σ, and ϵ ă ϵ0, the diameter of the thick part Σrϵ,8q is bounded above and
below by constants that depend only on ϵ and the topology of Σ.

The rest of the proof of the claim is divided into two case.

Case 1. There is no ϵ ą 0 so that zipnq is contained in the ϵ–thick part of Σ˝
i pnq

for all i and n.

Passing to a further subsequence if necessary, we can assume that there is some
zin

pnq in the 1
n –thin part of Σ˝

in
pnq for all n and some in. Since a pleated surface is

a 1-Lipschitz map into M∖Lτ , it maps ϵ-thin parts in each Σ˝
i pnq to ϵ-thin parts in

M∖Lτn
. In particular, γn enters arbitrarily deep into the Margulis tube around the

geodesic representative of a curve in Σ˝
in

pnq; see [BM82,Mey87]. Since ℓpγnq ď R,
γn must be entirely contained in this Margulis tube for all n sufficiently large, and
is thus homotopic into Σ˝

in
pnq. This is a contradiction since every loop in Σ˝

in
pnq is

null-homotopic in M .

Case 2. There exists 0 ă ϵ ă ϵ0 so that zipnq is contained in the ϵ–thick part of
Σ˝

i pniq for all i and n.

Without loss of generality, we assume that ϵ is small enough so that distinct
ϵ–thin parts of M∖Lτn are 1–separated. The ϵ–thick part of Σ˝

i pnq has uniformly
bounded diameter since Σ˝

i pnq has bounded Euler characteristic (it is a sphere with
at most 11 punctures). Thus there is a boundary component of the ϵ–thick part of
Σ˝

i pnq within some fixed distance δ from zipnq for all i and n. For each i and n, let
wipnq be a point in the ϵ–thin part of Σ˝

i pnq which is distance at most δ ` 1 from
zipnq.

For each n, we note that the points w0pnq, . . . , wn´1pnq are in distinct thin parts
of M ∖Lτn

. This follows directly from the lemma if the thin parts are horoball
cusps, and otherwise it follows by considering the totally geodesic representatives
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of the isotopy classes of the surfaces in the CATp´1q metric: since the surfaces are
pairwise disjoint, no geodesic in one is homotopic to a curve in another.

Since tw0pnq, . . . , wn´1pnqu are in distinct ϵ–thin parts, which are 1–separated,
this set of points is also 1–separated. Lift γn to a geodesic path rγn of length at
most R in the universal cover H3 based at some point p. For each zipnq P γn, let
rzipnq be a point on rγn that projects to zipnq and rwipnq be a point within distance
δ ` 1 of rzipnq that projects to wipnq. See Figure 8. Then t rw0pnq, . . . , rwn´1pnqu is
also a 1–separated set of n points. On the other hand, for each n, these points are
contained in a ball of fixed radius R ` δ ` 1 in H3. This is a contradiction for n
sufficiently large since a 1–separated set in such a ball contains at most V pR`δ`3{2q

V p1{2q

points, where V prq is the volume of a hyperbolic ball of radius r.

rwipnq

rwkpnq

rzjpnq

rwjpnq

rzipnq

rzkpnq

p
Ăγn

Bpp, R ` δ ` 1q

Figure 8. The points t rw0pnq, rw1pnq, . . . , rwn´1pnqu are all con-
tained in the ball Bpp, R ` δ ` 1q Ă H3.

Since a uniform bound on esssyspLτn
q for any subsequence produces a contra-

diction, it follows that
lim

nÑ8
esssyspLτn

q “ 8,

as required. □

As already noted, the claim implies the theorem. □

4. Concluding Remarks

As indicated in the introduction, if one is only interested in proving the links
Lτ can be taken to be filling, we can shorten the proof a little, and avoid using
Thurston’s Hyperbolization Theorem. We now sketch how that can be done. The
locally CATp´1q metric on M ∖Lτ has universal cover that is also 1–hyperbolic
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(since triangles are thinner than their comparison triangles in H2 which are 1–
slim). Consequently, we could apply a Theorem 2.2 to this metric, and deduce
the same conclusion in Theorem 1.4 (that is, sufficiently large locally CATp´1q

essential systole implies filling). In this metric, the complement T ∖ pLτ X T q in
any tetrahedron of T of τ has exactly the hyperbolic structure constructed in §3.2.
Consequently, we can find ε ą 0 so that the totally geodesic representatives of
disjoint surfaces Σ˝

x, Σ˝
y P S˝

τ which do not share a cusp in M ∖Lτ have disjoint
ε–neighborhoods. If ε is small enough, the ε–thin parts are precisely horoball cusp
neighborhoods and are ε–separated. Now if γ is a geodesic in this metric realizing
the locally CATp´1q essential systole for Lτ , and n is as in Lemma 3.11, then γ
intersects at least n pairwise disjoint surfaces Σ˝

0, . . . , Σ˝
n´1, no two of which share

a cusp. Consequently, the length γ is at least nε, which can be made arbitrarily
large.

For any n ě 4, there is a related notion of filling links in closed n–manifolds and
an analogue of Question 1.1. Namely, given a smooth, closed n–manifold, M , a
1–spine f : Γ Ñ M is a minimal rank graph with f˚ : π1pΓq Ñ π1pMq surjective.
A filling link is an embedded, codimension 2 submanifold i : L Ñ M such that for
any f : Γ Ñ M∖L where i ˝ f is a 1–spine, we have that f˚ is injective.

This leads us to following question:
Question 4.1. Which smooth, closed manifolds M with dimpMq ě 4 contain filling
links?

One approach to construct such links might be to modify the sketch above,
at least in some low dimensions and for manifolds admitting nice triangulations.
Specifically, can one find some explicit CATp´1q metric coming from hyperbolic
metrics on an n–simplex minus a tangle? We note that one cannot hope to find
honest hyperbolic links in general, even for the case of dimM “ 4; see [Sar18].
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