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MARKED LENGTH SPECTRUM RIGIDITY FOR SURFACE

AMALGAMS

YANDI WU

Abstract. In this paper, we show that simple, thick negatively curved two-
dimensional P-manifolds, a large class of surface amalgams, are marked length
spectrum rigid. That is, if two piecewise negatively curved Riemannian metrics
(satisfying certain smoothness conditions) on a simple, thick two-dimensional
P-manifold assign the same lengths to all closed geodesics, then they differ by
an isometry up to isotopy. Our main theorem is a natural generalization of
Croke and Otal’s celebrated results about marked length spectrum rigidity of
negatively curved surfaces.

1. Introduction

Mostow’s famous rigidity theorem states that for closed hyperbolic manifolds of
dimension greater than two, the metric is completely determined by the fundamen-
tal group up to isotopy. Mostow’s rigidity theorem does not hold for hyperbolic
surfaces or negatively curved Riemannian metrics without constant sectional curva-
ture. For these cases, in order to conclude two metrics are equivalent up to isotopy,
further restrictions are needed, such as requiring the surfaces to have the same
marked length spectra, defined as follows:

Definition 1.1 (Marked length spectrum). Themarked length spectrum of a metric
space (M, g) is the class function

MLS : π1(M) → R
+, [a] �→ inf

γ∈[α]
�g(γ)

which assigns to each free homotopy class [α] ∈ π1(M) the infimum of lengths in
the class.

In particular, if g is negatively curved or locally CAT(-1), each homotopy class of
curves has a unique geodesic representative, so the marked length spectrum assigns
a length to each closed geodesic in (M, g). We say that (M, g0) and (M, g1) have the
same marked length spectrum if for every [α] ∈ π1(M), MLS0([α]) = MLS1([α]).
A class of metrics M is marked length spectrum rigid if whenever (M, g0) and
(M, g1) ∈ M have the same marked length spectrum, there exists an isometry
ϕ : (M, g0) → (M, g1) that is isotopic to the identity.

In this paper, we will study a class of objects, defined below, that are natural
generalizations of surfaces. Definition 1.2 is adapted from Definition 2.3 of [31].
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Definition 1.2 (Negatively curved two-dimensional P-manifold). A compact met-
ric space X is a negatively curved two-dimensional P-manifold if there exists a
closed subset Y ⊂ X (the gluing curves of X) that satisfies the following:

(1) Each connected component of Y is homeomorphic to S1;
(2) The closure of each connected component of X − Y is homeomorphic to

a compact surface with boundary endowed with a negatively curved (Rie-
mannian) metric, and the homeomorphism takes the component ofX−Y to
the interior of a surface with boundary. We will call each X − Y a chamber
in X;

(3) There exists a negatively-curved metric on each chamber which coincides
with the original metric.

If Y forms a totally geodesic subspace of X consisting of disjoint simple closed
curves, we say that X is simple. If each connected component of Y (gluing curve) is
attached to at least three distinct boundary components of chambers, then we say
X is thick (note this definition differs slightly from the one given in [31] but follows
the one given in [32] and [30]). Like Lafont in [31], we will only be considering
simple, thick two-dimensional P-manifolds. Doing so ensures X is locally CAT(-1)

(in other words, its universal cover, X̃, is CAT(−1)) and guarantees some useful
properties, such as one pointed out in Lemma 2.9. Lafont has defined higher dimen-
sional P-manifolds as well (see [32]); we focus on the two-dimensional ones, which
consist of surfaces with boundary glued together along their boundary components.
Throughout this paper, all P-manifolds will be assumed to be two-dimensional.

Figure 1. An example of a simple, thick (two-dimensional) P-
manifold with four chambers

We will equip a simple, thick negatively-curved P-manifold X with a metric in a
class we denote as M≤, following the notation from [9]. For the precise definition
of M≤, we refer the reader to Section 2.1, but roughly speaking, metrics in M≤ are
locally CAT(-1) piecewise Riemannian metrics with an additional condition that
limits pathological behavior around the gluing curves of X. We now state the main
result of the paper:

Theorem 1.3. Suppose (X, g1) and (X, g2) are simple, thick negatively-curved P-
manifolds equipped with metrics g1, g2 ∈ M≤. Furthermore, suppose (X, g1) and
(X, g2) have the same marked length spectrum. Then there is an isometry φ :
(X, g1) → (X, g2) that is isotopic to the identity.
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The marked length spectrum rigidity problem has a long history. Fricke and
Klein showed the class of closed hyperbolic surfaces is marked length spectrum
rigid (see [18]). Burns and Katok then conjectured that closed negatively curved
manifolds of all dimensions are marked length spectrum rigid in [7]. A major
breakthrough occurred when Croke and Otal independently proved the conjecture
in dimension two (see [35], [14]). Croke and Otal’s results led to a large quantity of
generalizations of the marked length spectrum rigidity problem for surfaces, some
(but far from all) of which are listed here. Croke, Fathi, and Feldman extended
Croke’s result to the case of non-positively curved metrics in [13]. In another
direction, Hersonksy and Paulin extended Otal’s result to the case of negatively
curved metrics with finitely many cone singularities in [25]. Duchin, Leininger, and
Rafi proved marked length spectrum rigidity for closed surfaces endowed with flat
metrics with finitely many cone singularities arising from quadratic differentials in
[17], a result extended by Bankovic and Leininger in [2], who proved the result
for all flat metrics with finitely many cone singularities. Finally, by combining
previous methods, Constantine proved marked length spectrum rigidity for non-
positively curved metrics on surfaces with finitely many cone singularities in [8].
We remark that marked length spectrum rigidity is unlikely to hold for surfaces
with boundary, although Guillarmou and Mazzucchelli have shown a weaker form
of rigidity, marked boundary rigidity, for a large family of negatively curved metrics
on surfaces with strictly convex boundary (see [21]).

While the marked length spectrum rigidity problem has been well-studied in
the case of surfaces, for higher dimensions, the conjecture remains largely open.
Hamenstädt showed marked length spectrum rigidity for rank one locally symmet-
ric closed manifolds of dimension greater than 2 (see [24]). There is also a local
marked length spectrum rigidity result for closed, compact manifolds of all dimen-
sions with Anosov geodesic flow due to Guillarmou and Lefeuvre (see [20]). For
metric spaces that are not manifolds, the question also remains largely unstudied,
although there are a few notable results. Work by Culler and Morgan (see [15])
and Alperin and Bass (see [1]) leads to a marked length spectrum rigidity result
for Culler-Vogtmann Outer Space, built to study the group Out(Fn) in analogy to
the relationship between the Teichmüller space of S, T (S), and the mapping class
group, Mod(S). Generalizing the work from [15] and [1], Constantine and Lafont
prove a version of marked length spectrum rigidity of compact, non-contractible
one-dimensional spaces in [10]. In [9], they show that certain compact quotients of
Fuchsian buildings, including those with piecewise hyperbolic metrics, are marked
length spectrum rigid.

Outline of the paper. In Section 2, we define precisely the class of metrics M≤
and review some fundamental facts about CAT(-1) spaces. Furthermore, we de-
tail some separability properties of hyperbolic groups developed by Haglund and
Wise which we will use in Section 4. In Section 3, we patch together isometries
constructed in [35] to prove the theorem for P-manifolds with the property that
each chamber can be included into a closed surface. Since there is no well-defined
unit tangent bundle, proving ergodicity of the geodesic flow map, a key component
of Otal’s original proof, requires some heavy machinery included in the Appendix.
Finally, in Section 4, we prove the general case by constructing finite-sheeted covers
to reduce to the base case examined in Section 3. The argument relies on sepa-
rability properties of the fundamental groups of simple, negatively-curved surface
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amalgams, which can be realized as non-positively curved cube complexes. In par-
ticular, we show that such groups are QCERF, which allows one to promote certain
immersions to embeddings in finite-sheeted covers.

2. Preliminaries

2.1. The class of metrics M≤. We first precisely define the class of metrics M≤
under consideration in Theorem 1.3 and point out some important properties. We
say g ∈ M≤ if g satisfies the following properties:

(1) Each chamber of C ⊂ X is equipped with a negatively-curved Riemannian
metric with sectional curvature bounded above by−1 so that C has geodesic
boundary components;

(2) The restrictions of g to the chambers of X are “compatible” in the sense
that if two boundary components b1 and b2 of two (possibly the same)
chambers C1 and C2 are both attached to a gluing curve γ ⊂ X, then the
gluing maps b1 ↪→ γ and b2 ↪→ γ are isometries (in particular, we do not
allow circle maps of degree two or greater like those explored in [26]);

(3) For any two boundary components b1 ∈ C1 and b2 ∈ C2, the restriction
of g to Nb1

⋃
b1∼b2

Nb2 is a negatively curved smooth Riemannian metric

with sectional curvature bounded above by −1, where Nb1 and Nb2 are
ε-neighborhoods around b1 and b2 respectively for some ε > 0.

We impose the third condition to ensure that we can exploit previous marked
length spectrum rigidity results for surfaces which in particular require Riemannian
negatively curved metrics with at most a finite number of cone singularities. We
remark that Theorem 1.3 still holds if one introduces a finite number of cone singu-
larities (points with cone angles greater than 2π) to each chamber; instead of using
Theorem 1 from [35] in the proof of Lemma 3.8, one would instead use Theorem C
from [25] or Corollary 2 from [8]. Furthermore, we suspect Condition (3) could be
eliminated if one were to carefully modify Otal’s proof to allow for metrics that are
Riemannian outside a singular set of gluing geodesics, but more work would need
to be done.

Finally, we point out that a surface amalgam is non-positively curved (NPC) if
each chamber admits a non-positively curved Riemannian metric. Note that the
only difference between negatively curved and NPC surface amalgams is the latter
may have chambers which are cylinders. For the sake of completeness, we will
briefly allow NPC surface amalgams in some auxiliary lemmas in Section 4.

We now discuss some properties of M≤ that will be useful in the proof of The-
orem 1.3.

2.1.1. Properties of M≤. First, we remark that metrics inM≤ are locally CAT(-1):

Remark 2.1. If (X, g) is a negatively-curved P-manifold where g ∈ M≤, then (X, g)
is locally CAT(-1).

Indeed, suppose X is equipped with a metric g ∈ M≤ and C ⊂ X is a chamber
in X. Recall a generalization of the Cartan-Hadamard Theorem which states that
a smooth Riemannian manifold M has sectional curvature ≤ κ if and only if M is
locally CAT(κ) (see [5, Theorem 1A.6]). As a result, the restriction of g to C is
locally CAT(-1) since C is endowed with a negatively curved metric with sectional
curvature bounded above by −1. If κ ∈ R and X1 and X2 are locally CAT(κ)
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Figure 2. The universal cover of a simple, thick P-manifold (X, g)

spaces glued isometrically along a convex, complete metric subspace A ⊂ X1 ∩X2,
then X1 �A X2 is locally CAT(κ) (see Theorem 2.11.1 in [5]). As a result, since
we have endowed each chamber in a P-manifold X with a locally CAT(-1) metric,
(X, g) will also be locally CAT(-1), which shows the remark.

The locally CAT(-1) property of metrics in M≤ will prove useful in the proof
of the base case of the main result in the Section 3. Note that CAT(-1) spaces are
also Gromov (δ-)hyperbolic, so (X, g) where g ∈ M≤ is also Gromov hyperbolic,
another useful property we will exploit in Section 3.

Remark 2.2. Another way to show that (X, g) where g ∈ M≤ is Gromov hyper-
bolic is to observe that any two-dimensional P-manifold (a metric space satisfying
only Conditions (1) and (2) from Definition 1.2) has a fundamental group that is
an amalgamated product of surface groups and free groups over cyclic subgroups
(without any Z

2 subgroups), which is Gromov hyperbolic by the Bestvina-Feighn
Combination Theorem (see [3]).

2.2. The universal cover of a simple, thick P-manifold. Next, we describe
the universal cover of a simple, thick P-manifold, which we will be working with

extensively in Section 3. Roughly speaking, X̃ will look like an infinite collection
of totally geodesic subspaces of disks (homeomorphic to H

2) glued together in a

tree-like fashion. Following Lafont, we will call disks in X̃ apartments. Throughout
this paper, also following Lafont, we will also call polygonal lifts of chambers in

the universal cover a chamber. Following Lafont, we will call geodesics in X̃ that
project to gluing curves under the covering map branching geodesics.

While in general, X̃ is very hard to visualize, the case where each chamber can be
included into a closed surface is much easier to describe. We will focus on describing

X̃ in this special case since our proof strategy relies on reducing to it. Each gluing

geodesic γ will lift to a countably infinite collection of branching geodesics in X̃,
with a countably infinite collection in each apartment containing lifts of chambers
that intersect γ. Each of these lifts of γ are adjacent to n half planes, where n is
the number of boundary components attached to γ. Each closed surface will lift to
an infinite collection of apartments tiled by lifts of chambers that are embedded in

the closed surface. See Figure 2 for an illustration of X̃.
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Figure 3. An illustration of the calculation of [ξξ′ηη′] in H
2

Remark 2.3. Some readers may notice similarities between X̃ and a two-dimensional
hyperbolic building. Even the terminology of P-manifolds borrows heavily from that
of buildings; both have “chambers,” “apartments” and sets of branching geodesics,
which are called walls in building terminology. This allows us to borrow some defi-
nitions, such as intersection numbers, from [9]. However, for buildings, boundaries
of chambers are not totally geodesic in the space, so their walls are not totally
geodesic. The proof methods from [9] are different from those seen in this paper in
part due to this fact. Furthermore, all the chambers in buildings are assumed to be

isometric, which is not the case in X̃. See Section 1.4.3 of [33] for a more complete
list of differences between buildings and P-manifolds.

2.3. Visual boundaries. In this section, we will assume that (X̃, g̃) is a proper
(closed balls are compact) metric space that is either CAT(-1) or Gromov hyper-
bolic; the definitions are the same for both. For more details and background, we

refer the reader to [28]. We say that two geodesic rays in X̃, α1 : R≥0 → X̃,

and α2 : R≥0 → X̃ are asymptotic if they lie within bounded distance of one an-
other; in other words, there exists some finite M ≥ 0 such that for all t ∈ R≥0,

d(α1(t), α2(t)) ≤ M . To define ∂∞(X̃, g̃), fix any basepoint x0 ∈ (X̃, g̃) and con-
sider the set of all geodesic rays originating from x0. Two geodesic rays based at
x0 are equivalent if they are asymptotic.

Definition 2.4 (Visual boundary). We define equivalence classes of such geodesic

rays based at x0 as the visual boundary of X̃, ∂∞(X̃, g̃).

When g̃ is CAT(-1), there is a unique geodesic in (X̃, g̃) between any two points

in ∂∞(X̃, g̃) (see Proposition 1.4 of [5]), so the space of oriented geodesics in X̃ is

identified with ∂∞(X̃, g̃)× ∂∞(X̃, g̃) \Δ, where Δ indicates the diagonal.
We define the cross ratio as follows:

Definition 2.5 (Cross ratio and Möbius maps). If (X̃, g̃) has boundary ∂∞(X̃, g̃),
one can define the cross ratio of a four-tuple of distinct boundary points (ξ, ξ′, η, η′)

∈ (∂∞(X̃))4:

(1) [ξξ′ηη′] = lim
(a,a′,b,b′)→(ξ,ξ′,η,η′)

1

2
(g̃(a, b) + g̃(a′, b′)− g̃(a, b′)− g̃(a′, b)).

See Figure 3 for an example in H
2).

A map ∂∞f : ∂∞(X̃, g̃1) → ∂∞(X̃, g̃2) is Möbius if it preserves the cross ratio
(i.e. [ξξ′ηη′] = [f(ξ)f(ξ′)f(η)f(η′)]).
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From the definition of the cross-ratio, it follows that:

(2) [abcd] = [cdab] and − [abdc] = [abcd] = −[bacd].

We are now ready to define the Gromov Product:

Definition 2.6 (Gromov product). Let x ∈ (X̃, g̃) and a, b ∈ ∂∞(X̃). Then the

Gromov Product of a and b with respect to a basepoint x ∈ X̃ is:

〈a, b〉x = lim
(ai,bi)→(a,b)

1

2
(g̃(ai, x) + g̃(x, bi)− g̃(ai, bi)).

The Gromov product measures how long two geodesics travel close together in

(X̃, g̃). Indeed, if ai, bi, x ∈ X̃ are three arbitrary points in a δ-hyperbolic metric
space, then

〈ai, bi〉x =
1

2
(g̃(ai, x) + g̃(x, bi)− g̃(ai, bi))

approximates within 2δ the distance between x and the geodesic segment [ai, bi].

As a result, the Gromov product provides a convenient way to topologize ∂∞(X̃, g̃).

Indeed, we can define a countable neighborhood base for any p ∈ ∂∞(X̃) and d ∈ N

as follows:

(3) B(p, d) = {q ∈ ∂∞(X̃)|〈p, q〉x > d}.
Using the Gromov Product, we can also endow ∂∞(X̃, g̃) with a visual metric

that induces the aforementioned topology on ∂∞(X̃, g̃):

Definition 2.7 (Visual metric). Let (X̃, g̃) be a proper CAT(-1) space. Suppose

a, b ∈ ∂∞(X̃, g̃). Then for some fixed basepoint x ∈ (X̃, g̃), we can assign ∂∞(X̃, g̃)
a visual metric:

(4) g̃∞,x(a, b) =

{
e−〈a,b〉x if a �= b,

0 otherwise.

Note that if x′ ∈ (X̃, g̃) is a different basepoint, then we have that for A =

e2δeg̃(x,x
′) > 1:

A−1g̃∞,x(a, b) ≤ g̃∞,x′(a, b) ≤ Ag̃∞,x(a, b).

2.3.1. The visual boundary of a P-manifold. We now present some useful properties

of the visual boundary of a simple, thick P-manifold (X̃, g̃). As before, we will
assume all the chambers in X are negatively curved.

Bass-Serre theory provides a useful characterization of points on ∂∞(X̃). Con-
sider a bipartite graph of groups decomposition G of G = π1(X), where there is a
vertex group π1(C) for each chamber C ⊂ X and 〈γ〉 ∼= Z for each gluing curve
γ ⊂ X. Furthermore, there is a cyclic edge group between 〈γ〉 and π1(C) for each
boundary component of C that is attached to γ. Thus, G = V0 � V1 can be parti-
tioned into collection of vertices labeled with 〈γ〉, which we will call V0, and those
labeled with π1(C), which we will call V1 (see [16] for more details on and exam-
ples of this construction). The Bass-Serre tree of G is a tree T on which G acts
minimally (i.e. there is no proper invariant subtree of T ) and without inversions
on edges with quotient G = T/G.

To better describe the Bass-Serre tree T , we briefly summarize the main points
from Section 4.1 of [34], which uses Bowditch’s construction to characterize bound-
ary points for geometric amalgams of free groups (e.g. π1(X)). Given a point in
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x ∈ ∂∞(X̃), Bowditch characterizes x by val(x), the number of topological ends of

∂∞(X̃) \ {x}. In particular, for a simple, thick P-manifold with negatively-curved
chambers, val(x) = n ≥ 3 if x is a branching geodesic attached to n distinct bound-
ary components and val(x) = 2 otherwise. Bowditch defines separate equivalence

classes for M(2) = {x ∈ ∂∞(X̃) : val(x) = 2} and M(3+) = {x ∈ ∂∞(X̃) : val(x) ≥
3}:

(1) For points in M(3+): We say x ≈ y if either x = y or the number of

connected components of ∂∞(X̃) \ {x, y} is equal to val(x) and val(y).
(2) For points in M(2): We say x ∼ y if x = y or the number of connected

components of ∂∞(X̃) \ {x, y} is equal to 2.

In both cases, equivalent pairs of points form a cut pair of ∂∞(X̃). The Bass-
Serre tree is a bipartite infinite-valence tree consisting of vertices labeled by equiv-
alence classes in M(3+) and M(2), which represent conjugacy classes of vertices
in V0 and V1 respectively. Two vertices Λe and Λv ∈ T corresponding to a ≈-class
in M(3+) and ∼-class in M(2) respectively are connected by an edge if any two

distinct points x, y ∈ Λv lie on the same connected component of ∂∞(X̃) \ {a, b},
where a, b are the two distinct points in Λe corresponding to endpoints of some

branching geodesic. Bowditch thus formulates a trichotomy of points in ∂∞(X̃):

Proposition 2.8 (Proposition 1.3 of [4] and Lemma 10 of [29]). If π1(X) acts on

Bass-Serre tree T , then each point x ∈ ∂∞(X̃) corresponds to exactly one of the

following equivalence classes of points in ∂∞(X̃):

(1) A point in Λe corresponding to some conjugate of V0 ∈ V (G);
(2) A point in Λv corresponding to some conjugate of V1 ∈ V (G);
(3) A point of ∂∞(T ), with a unique x for each point in ∂∞(T ).

In other words, ≈-classes in M(3+) correspond to vertices in category (1) in
Proposition 2.8 while vertices in category (2) correspond to ∼-classes of M(2).

Using Proposition 2.8, we can topologically characterize points in ∂∞(X̃). As
mentioned earlier, points in category (1) correspond to endpoints of branching

geodesics, lifts of gluing curves in ∂∞(X̃). Equivalence classes of points corre-
sponding to a vertex in category (2) consist of points x and y such that the unique
geodesic (x, y) between x and y does not intersect any branching geodesics. In-

deed, if (x, y) were to intersect a branching geodesic, ∂∞(X̃) \ {x, y} would still be
connected. Topologically, one can check that this means x and y in fact lie on the
boundary of the same connected component of p−1(C) \ {BG}, where C is some

chamber in X, p : X̃ → X is the universal covering map, and BG is the full set of

branching geodesics in X̃. A vertex Λe is connected to a vertex Λv if the branching
geodesic corresponding to Λe is a boundary component of the connected component
of p−1(C) \ {BG} associated with Λv. From this information, we see that traveling

along an edge in T is equivalent to crossing a branching geodesic in X̃. Thus, the
unique points in category (3) correspond to geodesic rays that intersect infinitely

many branching geodesics in X̃.

We now point out that points on ∂∞(X̃) lie on boundaries of embedded disks,
a fact stated in the proof of Lemma 3.1 in [31]. For the convenience of the reader,
we provide a proof as well.
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Lemma 2.9. Given a geodesic γ ∈ X̃ with endpoints p, q ∈ ∂∞(X̃), there exists an
isometrically embedded apartment containing γ. That is, p and q lie in an embedded

S1 ⊂ ∂∞(X̃). As a consequence, the boundary ∂∞(X̃) is path-connected.

Proof. First, we consider the case where γ is a gluing geodesic. If p(γ), the gluing

geodesic lifting to γ in X̃, is a closed geodesic in a closed surface, then there is au-
tomatically an apartment containing γ. Otherwise, consider two distinct boundary
components b1 ⊂ C1 and b2 ⊂ C2 attached to p(γ); note that b1 and b2 exist due to
the thickness hypothesis and C1 and C2 are not required to be distinct chambers.

In X̃, there is a set of lifts of C1, which we will call K1, that forms a totally geodesic
subset of a half-disk containing γ. Similarly, there is a set of lifts of C2 forming a
totally geodesic subset K2 (disjoint from K1) of a half-disk containing γ. Note that
even thoughK1∪K2 is only a subset of a disk containing γ, we can “fill out”K1∪K2

to obtain an apartment A embedded in X̃. Indeed; if there is part of a disk missing

from K1 ∪K2, its boundary must necessarily be a branching geodesic γ′ in X̃. By
the thickness hypothesis, there is some collection of polygons P disjoint from K1

and adjacent to γ′ that project to a chamber C adjacent to a gluing geodesic p(γ′)
in X. We can “continue” A by attaching a subset of a half-plane disjoint from K1

and tiled by copies the polygons in P. We then iterate, attaching collections of lifts

of chambers and eventually limiting to a half-plane H1 ⊃ K1 embedded in ∂∞(X̃).
Apply the same procedure to obtain a half-disk H2 containing K2. Note that this
construction may be counterintuitive because A = H1 ∪H2 does not project under
the covering map to any surfaces in X (see Figure 4).

The case where γ is not a gluing geodesic is similar. Note that in this case, γ
will pass through a sequence of branching geodesics {γn}n∈N. For each γn that γ
passes through, γ will also pass through a collection Pn of lifts of Cn, a chamber
attached to p(γn). Note Pn can be chosen to be a totally geodesic subspace of a
disk, Kn, containing both γn and γn+1; similar to the procedure from before, we
can “fill in” Kn to a connected section of a disk bordered by γn and γn+1, which
we will call Hn. Iterate the procedure to obtain an apartment A =

⋃
n∈N

Hn. For a

proof of why this implies ∂∞(X̃) is path-connected, we refer the reader to [31].
�

Lemma 2.9 allows us to define intervals in ∂∞(X̃):

Definition 2.10 (Interval on ∂∞(X̃)). Suppose X is a simple, thick negatively-

curved P-manifold. An interval on ∂∞(X̃) with endpoints a, b ∈ ∂∞(X̃) is an

interval on the boundary of an apartment containing the unique geodesic in X̃
with endpoints a and b.

2.4. Subgroup separability, QCERF, and NPC cube complexes. We now
briefly introduce key tools for the arguments in Section 4 and give a preview of
some claims we will prove.

Definition 2.11 (Separability of a subgroup). Let G be a group and let H ≤ G
be a subgroup. We say that H is separable in G if for any g ∈ G \H, there exists
a finite-index subgroup K < G which contains H but g /∈ K.

If the trivial subgroup H = {1} is separable in G, we say that G is residually
finite. Separability properties have attracted considerable interest in recent decades
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Figure 4. An example of how to choose an apartment contain-
ing γ. In this example, p(γ) is completely contained in the torus
with one boundary component C1, which lifts to a totally geodesic
subspace of a half-disk. We can fill in the missing portions of the
half-disk (shaded in gray) with portions of disks that are copies
of the universal cover of C2. While this is an especially straight-
forward case of the filling in procedure, the construction works in
general.

due to an associated powerful topological property which allows one to promote
certain immersions to embeddings:

Theorem 2.12 (Scott [38, Lemma 1.3]). Let G be a finitely generated group and X
a CW complex such that π1(X) = G. Let H ≤ G and Y → X a cover corresponding
to H. Then H is separable if and only if for every finite subcomplex K ⊆ Y , there
exists an intermediate finite-sheeted cover Y → Z → X such that K embeds as a
subcomplex of Z.

A groupG is subgroup separable, or, for historical reasons, LERF, if every finitely-
generated subgroup of G is separable. In general, it is unknown which fundamental
groups of simple, thick, negatively curved surface amalgams are subgroup sepa-
rable, although results due to Gitik in [19] provide partial results. For example,
the fundamental groups of the surface amalgams from Figure 2 and Figure 4 are
subgroup separable.

When subgroup separability of a group G is unknown, one can sometimes show
that well-behaved subgroups of G are separable. A subspace Y of a geodesic metric
space X is quasiconvex if there exists a K ≥ 0 such that, for all y1, y2 ∈ Y and all
x ∈ [y1, y2], d(x, Y ) ≤ K. Note that if K = 0, Y is convex. A group H acting on a
geodesic metric space X is quasiconvex if the orbit Hx is a quasiconvex subspace of
X for some (any) x ∈ X. We point out a stronger notion: if H acts cocompactly on
and stabilizes C, a convex subset of X, then H is convex. A group G is quasiconvex
subgroup separable (QCERF) if every quasiconvex subgroup of G is separable.

A particularly well-behaved class of groups are those which act properly and
cocompactly on non-positively curved (NPC) cube complexes, also known as CAT(0)
cube complexes. Recall that a cube complex is built from gluing unit cubes along
their faces by isometries. The link of a vertex v, lk(v), in a cube complex is a
simplicial complex whose vertices lie on the edges adjacent to v. A collection of
vertices in lk(v) spans a (d−1)-dimensional complex if and only if they lie on edges
of a common d-dimensional complex. A link lk(v) is flag if for every complete graph
in lk(v), there is a simplex in lk(v) whose 1-skeleton is the complete graph. A cube
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complex is NPC if it satisfies a combinatorial link condition: all vertex links of the
cube complex are flag complexes. We will later show that simple, non-positively
curved surface amalgams are NPC cube complexes.

In their seminal paper [22], Haglund and Wise define special cube complexes. We
refer the reader to Section 3 of their paper for precise definitions, but special cube
complexes satisfy three conditions: (1) every hyperplane embeds; (2) no hyperplane
directly self-osculates; and (3) no two hyperplanes inter-osculate. A group G is
virtually special if it has a finite-index subgroup which is the fundamental group of
a special cube complex. One main result in [22] is that Gromov hyperbolic virtually
special groups are QCERF:

Theorem 2.13 ([22, Corollary 7.4]). Let X be a compact cube complex with Gromov
hyperbolic fundamental group. If X is virtually special, then every quasiconvex
subgroup of π1(X) is separable (i.e., π1(X) is QCERF).

Finally, we mention a convenient criterion developed by Wise for determining
whether a Gromov hyperbolic group is virtually special:

Definition 2.14 ([40, Definition 11.5]). Let QVH denote the smallest collection
of hyperbolic groups closed under the following four operations:

(1) 1 ∈ QVH;
(2) If G = A ∗C B, A,B ∈ QVH, and C is finitely generated and quasiconvex

in G, then G ∈ QVH;
(3) If G = A∗C , A ∈ QVH, and C is finitely-generated and quasiconvex in G,

then G ∈ QVH;
(4) Let H ⊂ G be a finite-index subgroup and let H ∈ QVH. Then G ∈ QVH.

The following deep theorem relates the hierarchy of groups QVH to virtual
specialness:

Theorem 2.15 ([40, Theorem 13.3]). A torsion-free, Gromov hyperbolic group G
is virtually special if and only if G ∈ QVH.

Again, it is unknown which fundamental groups of surface amalgams are special;
however, using Theorem 2.15, we will prove that fundamental groups of simple
negatively curved surface amalgams are virtually special, and therefore QCERF.

3. The base case

Recall that for any proper metric space X, the identity map (X, g1) → (X, g2)

lifts to a quasi-isometry f : (X̃, g̃1) → (X̃, g̃2) by the S̆varc-Milnor Lemma. By the

Morse Lemma, f in turn induces a boundary homeomorphism ∂∞f : ∂∞(X̃, g̃1) →
∂∞(X̃, g̃2). The following section is devoted to proving ∂∞f induces an isometry,
a fact summarized in Proposition 3.1:

Proposition 3.1. Suppose X is a simple P-manifold endowed with a pair of metrics
g1 and g2 ∈ M≤. Furthermore, suppose that there is an inclusion of every chamber
C into a closed surface S ⊂ X. If (X, g1) and (X, g2) have the same marked length
spectrum, then there exists an isometry φ : (X, g1) → (X, g2) that is induced by the

boundary homeomorphism ∂∞f : ∂∞(X̃, g̃1) → ∂∞(X̃, g̃2) discussed above.

We first provide an outline of the proof. First, in the proof of Proposition 3.2

of Section 3.1, we show that the boundary homeomorphism ∂∞f : ∂∞(X̃, g̃1) →
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∂∞(X̃, g̃2) induced by the identity map is Möbius (see Definition 2.5). The proof
of Proposition 3.2 requires the ergodicity of the geodesic flow map, which can
be deduced from general theory developed by Kaimanovich in [27] for Gromov
hyperbolic spaces (see the Appendix). Using ergodicity of the geodesic flow map,

the proof of Lemma 3.5 shows the cross ratio of any distinct (a, b, c, d) ∈ (∂∞(X̃))4

can be approximated arbitrarily well by lengths of closed geodesics in (X, g). We
can thus conclude that ∂∞f is Möbius since (X, g1) and (X, g2) have the same
marked length spectra, which determine lengths of closed geodesics and thus cross
ratios. Next, in Section 3.2, we patch together isometries φS : (S, g1|S) → (S, g2|S)
constructed by Otal in [35] on every closed subsurface S ⊂ X to construct a global
isometry φ : (X, g1) → (X, g2). In particular, we show that given two surfaces S
and S′ that intersect in X, φS |S∩S′= φS′ |S∩S′ using the fact that ∂∞f is Möbius.

3.1. The boundary map is Möbius. In this section, we prove Proposition 3.2
by adapting Otal’s proof of Theorem 1 in [35]. Note that in this section, the metrics
are only assumed to be locally CAT(-1).

Proposition 3.2. Suppose (X, g1) and (X, g2) are two simple, thick locally CAT(-1)
P-manifolds. If (X, g1) and (X, g2) have the same marked length spectrum, then
the boundary map is Möbius.

A key ingredient in Otal’s proof is ergodicity of the geodesic flow map on surfaces,
a well-known and classical result. Recall that in the setting of surfaces, geodesic
flow is defined on the unit tangent bundle. For P-manifolds, however, the unit
tangent bundle is undefined on the gluing curves. One, however, has the notion of
a widely-studied generalized unit tangent bundle, which can be identified with the
usual unit tangent bundle in the setting of Riemannian manifolds.

Recall that for a metric space (X, g), a geodesic γ : R → X has speed s ≥ 0 if
for every t ∈ R, there exists a neighborhood U ⊂ R such that for all t1, t2 ∈ U ,
g(γ(t1), γ(t2)) = s|t1 − t2|. In particular, if s = 1, γ is a unit-speed geodesic.

Definition 3.3 (Generalized unit tangent bundle). Given a geodesically complete
metric space X, the generalized unit tangent bundle of X, SX, is the space of
unit-speed geodesics in X.

Suppose two unit-speed geodesics γ ∼ γ′ if γ(t) = γ′(−t) for all t ∈ R. Then
there is a natural identification of SX/∼ with G (X) × R, where as before, G (X)
denotes the space of unoriented, unparametrized geodesics in X. We say a point
x ∈ X is a basepoint of ξ ∈ SX if x = ξ(0). We now recall the definition of the
geodesic flow map on SX:

Definition 3.4 (Geodesic flow). The geodesic flow on SX is the map φt : SX →
SX, φt(ξ)(s) = ξ(t+ s), where s, t ∈ R.

For a closed negatively curved Riemannian surface, there is a unique direction
in which to continue a geodesic via the exponential map. On the other hand, for a
P-manifold, there are n−1 directions in which to continue a geodesic hitting a point
on a gluing curve γ, where n is the number of boundary components glued to γ.
Due to this key difference between surfaces and P-manifolds, the usual proof of the
ergodicity of the geodesic flow map on surfaces does not generalize to the setting
of P-manifolds and different techniques are needed. We refer the reader to the
Appendix, which summarizes a general result by Kaimanovich about the ergodicity
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of the geodesic flow map on proper Gromov hyperbolic spaces. Kaimanovich’s
results apply in our setting since simple, thick P-manifolds equipped with locally
CAT(-1) metrics are proper Gromov hyperbolic spaces.

Recall from [28] that a sequence of points (xn)n∈N in a Gromov hyperbolic space
X converges to infinity if for any choice of x ∈ X,

lim inf
i,j→∞

〈xi, xj〉x = ∞,

where 〈·〉x denotes the Gromov Product from Definition 2.6; this definition is inde-
pendent of choice of basepoint x. Furthermore, two sequences (xn)n∈N and (yn)n∈N

are equivalent if
lim inf

i,j→∞
〈xi, yj〉x = ∞.

Endowing X = X ∪ ∂∞(X) with the topology described in Definition 2.13 of [28],
we can think of points in ∂∞ as limit points of equivalence classes of sequences of
points in X that converge to infinity.

With the above paragraph in mind, we introduce a lemma whose proof is adapted
from Otal’s proof of Theorem 1 in [36]:

Lemma 3.5. Suppose X is simple, thick P-manifold endowed with a locally CAT(-1)

metric. Then given a 4-tuple of distinct points (a, b, c, d) ∈ (∂∞(X̃))4, [abcd] can
be approximated arbitrarily well by lengths of closed geodesics.

Proof. Fix a 4-tuple of distinct points (a, b, c, d) ∈ (∂∞(X̃, g̃))
4
. By the Birkhoff

Ergodic Theorem (see Section 5.3.1), we can conclude that there exists v ∈ SX with
dense orbit under the geodesic flow map φt on SX. Thus, there exist sequences
of vectors (φn(ṽ1))n∈N, (φ−n(ṽ1))n∈N, (φn(ṽ2))n∈N, and (φ−n(ṽ2))n∈N whose base-

points approach a, b, c, and d respectively (here, ṽ1 and ṽ2 are lifts of v in SX̃).
As a result, Then there exist ni ∈ N such that

[φn1
(ṽ1)(0)φ−n2

(ṽ1)(0)φn3
(ṽ2)(0)φ−n4

(ṽ2)(0)]

approximates [abcd] arbitrarily well.

Fix any u ∈ SX̃. Then since the orbit of v is dense in SX = SX̃/Γ, for
every sufficiently large m1 ∈ N there exists some γ1 ∈ Γ such that γ1 · φm1

(ṽ1) lies

arbitrarily close to γ1·u in SX̃/Γ. Similarly, there exists some γ3 ∈ Γ and sufficiently
large m3 ∈ N such that γ3 · φm3

(ṽ2) and γ3 · u are arbitrarily close. From this, by
choosing γl, γ

′
m ∈ Γ accordingly, we can construct sequences of vectors (γm · u)m∈N

and (γ′
l · u)l∈N whose basepoints limit to a and c respectively (see Figure 5). Note

that the translation lengths of γl and γ′
m will become arbitrarily large.

Let �γ−1
m γ′

l
be the length of the fundamental domain of the action of γ−1

m ◦ γ′
l on

its translation axis. Note that �γ−1
m γ′

l
, the length of a closed geodesic corresponding

to γ−1
m ◦ γ′

l, is approximated arbitrarily well by g̃((γm · u)(0), (γ′
l · u)(0)) since by

construction, the basepoints of (γm · u)m∈N and (γ′
l · u)l∈N approach the endpoints

of a geodesic (a, c) ∈ (X̃, g̃) and γ1 · u = (γ1 ◦ γ−1
3 )(γ3 · u). We apply a similar

argument to construct sequences (γ′′
k · u)k∈N and (γ′′′

j · u)j∈N that tend to b and
d respectively. Furthermore, we can construct the sequences such that g̃-distances
between basepoints of terms of the sequences are arbitrarily close to lengths of long
closed geodesics.

Since (γm · u)m∈N, (γ
′′
k · u)k∈N, (γ

′
l · u)l∈N, and (γ′′′

j · u)j∈N are sequences whose
basepoints tend to a, b, c, and d respectively, we have that [abcd] is approximated
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Figure 5. An illustration of the setup of Lemma 3.5

arbitrarily well by [(γm ·u)(0)(γ′′
k ·u)(0)(γ′

l ·u)(0)(γ′′′
j ·u)(0)]. Since we can approx-

imate [(γm ·u)(0)(γ′′
k ·u)(0)(γ′

l ·u)(0)(γ′′′
j ·u)(0)] by adding and subtracting lengths

of closed geodesics, the result then follows. �
We can now prove Proposition 3.2. By Lemma 3.5, for all i ∈ N, there is some

quadruple of geodesic arcs αi = (xi, yi), βi = (x′
i, y

′
i), γi = (xi, y

′
i), and δi = (x′

i, yi)
projecting to closed geodesics in X such that:

|[abcd]− (g̃1(xi, yi) + g̃1(x
′
i, y

′
i)− g̃1(xi, y

′
i)− g̃1(x

′
i, yi))| <

1

i
.

By construction, (xi, yi, x
′
i, y

′
i) converges to (a, b, c, d) in (X̃, g̃1) so (f(xi), f(yi),

f(x′
i), f(y

′
i)) will converge to (∂∞f(a), ∂∞f(b), ∂∞f(c), ∂∞f(d)) in (X̃, g̃2) since f

is continuous. Thus, by definition of cross ratio, we have that:

[abcd] = lim
i→∞

g̃1(xi, yi) + g̃1(x
′
i, y

′
i)− g̃1(xi, y

′
i)− g̃1(x

′
i, yi)

and

lim
i→∞

g̃2(f(xi, yi)) + g̃2(f(x
′
i, y

′
i))− g̃2(f(xi, y

′
i))− g̃2(f(x

′
i, yi))

= [∂∞f(a)∂∞f(b)∂∞f(c)∂∞f(d)].

Recall that since (xi, yi), (x
′
i, y

′
i), (x

′
i, yi) and (xi, y

′
i) each project to closed geodesics

in X, the distances between their endpoints are all lengths of elements in π1(X).
Thus, since (X, g1) and (X, g2) have the same marked length spectrum, g̃1(xi, yi) =
�g1(αi) = �g2(αi) = g̃2(f(xi, yi)), and a similar statement holds for the other dis-
tances as well. It then follows that [abcd] = [∂∞f(a)∂∞f(b)∂∞f(c)∂∞f(d)].

3.2. Proof of Proposition 3.1. In order to prove Proposition 3.1, we need a
few auxiliary lemmas. The first lemma is a basic fact about patching isometries
together.

Recall a metric space (X, d) is convex if for any two points x, y ∈ X, there exists
z ∈ X distinct from x and y such that d(x, z) + d(z, y) = d(x, y).

Lemma 3.6. Suppose Ui and Vi are complete, convex, locally compact metric
spaces, where i = 1, 2. Suppose φi : Ui → Vi are (invertible) isometries, and
φ1|U1∩U2

= φ2|U1∩U2
. Then there exists an isometry φ : U1∪U2 → V1∪V2 such that

φ|Ui
= φi|Ui

for i = 1, 2.
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Figure 6. An illustration of the setup of Lemma 3.6

Proof. In the following proof, for a metric space X, dX will denote the distance
function of X. We define φ in the natural way: φ(x) = φi(x) if x ∈ Ui. It suffices to
show the theorem is true when p and q are not both in U1 or U2. Suppose without
loss of generality p ∈ U1 and q ∈ U2. By Hopf-Rinow, since U1 ∪ U2 is complete,
convex, and locally compact, then there exists a minimizing geodesic between p and
q, which we will call [p, q]. Let r ∈ (U1∩U2)∩ [p, q], so dU1∪U2

(p, r)+dU1∪U2
(r, q) =

dU1∪U2
(p, q) (see Figure 6).

Since φi is an isometry for i = 1, 2, it follows that:

dV1∪V2
(φ(p), φ(r)) + dV1∪V2

(φ(r), φ(q)) = dV1
(φ1(p), φ1(r)) + dV2

(φ2(r), φ2(q))

= dU1
(p, r) + dU2

(r, q) = dU1∪U2
(p, q).

By triangle inequality, dV1∪V2
(φ(p), φ(q)) ≤ dU1∪U2

(p, q). For the reverse direction,
apply a symmetric argument: since V1∪V2 is complete, convex, and locally compact,
there exists a minimizing geodesic between φ(p) and φ(q), [φ(p), φ(q)]. Choose r′ ∈
[φ(p), φ(q)] ∩ (V1 ∩ V2) such that dV1

(φ(p), r′) + dV2
(r′, φ(q)) = dV1∪V2

(φ(p), φ(q)).
Since φi is invertible for i = 1, 2,

dV1∪V2
(φ(p), φ(q)) = dV1∪V2

(φ1(p), φ2(q)) = dV1
(φ1(p), r

′) + dV2
(r′, φ2(q))

= dU1
(p, φ−1

1 (r′)) + dU2
(φ−1

2 (r′), q) = dU1∪U2
(p, φ−1(r′))

+ dU1∪U2
(φ−1(r′), q)

≥ dU1∪U2
(p, q).

Then it follows dV1∪V2
(φ(p), φ(q)) = dU1∪U2

(p, q). �
The following is a technical lemma about the cross-ratio defined in Equation (1).

Lemma 3.7. Suppose (S̃, g̃|
˜S) and (S̃′, g̃|

˜S′) are two lifts of (S, g|S) and (S′, g|S′)

respectively that meet at a branching geodesic γ̃ ⊂ (X̃, g̃). Then for every p ∈ γ̃,
there exist four points a, b, c, d such that the geodesics (a, c), (b, d), (a, d), and (b, c)
all meet at p and [abcd] = 0.

Proof. Choose some p ∈ γ̃. We will find a set of four geodesics (a, c), (b, d), (a, d),

and (b, c) that all meet at p. Choose an arbitrary (a, c) ⊂ (S̃, g̃|
˜S) that transversely

intersects γ̃ at p in S̃. Suppose γ̃ divides S̃′ into two half planes, which we will
call H ′

1 and H ′
2. Consider a map h : ∂∞(H ′

1) → γ̃ that maps a point x �∈ ∂∞(H ′
1)

to the point h(x) = γ̃ ∩ (x, c) where (x, c) denotes the geodesic arc with endpoints
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Figure 7. By an intermediate value theorem argument, there ex-

ists some x ∈ ∂∞H ′
1 such that h̃(x) = p for a given point p ∈ γ̃

x and c. Note that h extends continuously to a map h̃ : ∂∞(H ′
1) → γ̃ ∪ {q, r},

where q, r ∈ ∂∞(S̃)∩ ∂∞(S̃′) are endpoints of γ̃ in the following way: h̃(q) = q and

h̃(r) = r. As we vary x along ∂∞(H ′
1), h(x) varies continuously along γ̃, so by an

Intermediate Value Theorem argument, since γ̃ and ∂∞(H ′
1) are both connected, it

follows that h̃(x) = p for some x ∈ ∂∞(H ′
1) (see Figure 7). We set b equal to this

x.
Note that (b, c) is a geodesic that passes through p. Continue the geodesic ray

(b, p) into H ′
2 ⊂ S̃′ to obtain a bi-infinite geodesic (b, d) ⊂ S̃′. Note that (a, d) will

also be a geodesic that passes through p. Thus, we have found four geodesics (a, c),
(b, d), (a, d), and (b, c) that all intersect at p. It is then possible to find a sequence
(ai, bi, ci, di) where ai ∈ (p, a), bi ∈ (p, b), ci ∈ (p, c) and di ∈ (p, d) such that:

[abcd] = lim
(ai,bi,ci,di)→(a,b,c,d)

g̃1(ai, ci) + g̃1(bi, di)− g̃1(ai, di)− g̃1(bi, ci)

= lim
(ai,bi,ci,di)→(a,b,c,d)

g̃1(ai, p) + g̃1(p, ci) + g̃1(bi, p) + g̃1(p, di)

− g̃1(ai, p)− g̃1(p, di)− g̃1(bi, p)− g̃1(p, ci)

= 0.

�

Let S be a collection of closed surfaces that covers X. We know such a covering
exists; for each chamber Ci ⊂ X, note that Ci ⊂ Si by assumption, where Si is a
closed surface. Then {Si}ni=1 is a collection of closed surfaces that covers X.

Lemma 3.8. Suppose S, S′ ∈ S are two closed surfaces in X that are identified
along some set of gluing curves {γ1, . . . , γn}. Then there exist isometries φS :
(S, g1|S) → (S, g2|S) and φS′ : (S′, g1|S′) → (S′, g2|S′) where φS |γi

= φS′ |γi
for all

1 ≤ i ≤ n.

Proof. Suppose (X, g1) and (X, g2) have the same marked length spectra. As before,

∂∞f will denote the boundary homeomorphism between ∂∞(X̃, g̃1) and ∂∞(X̃, g̃2).

Recall S̃ and S̃′ are apartments that are arbitrary lifts of S and S′ in X̃ such

that S̃∩ S̃′ �= ∅. We can then use the restrictions of the boundary homeomorphism
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Figure 8. Given a sequence of points {xi}ni=1 converging radially
to x, one can find a sequence of geodesics ξi and ηi with end-
points ai, bi, ci, di converging to x. The images of these endpoints
under the boundary homeomorphism ∂∞f will also converge to

∂∞f(x) = lim
i→∞

φ̃S(xi).

∂∞f |∂∞(˜S) and ∂∞f |∂∞(˜S′) to construct isometries φS : (S, g1|S) → (S, g2|S) and

φS′ : (S′, g1|S′) → (S′, g2|S′) via the methods of Otal. In other words, given

x ∈ (S̃, g̃1|˜S), consider the set of all geodesics in (S̃, g̃1|˜S) that intersect at x. By

[35], the set of geodesics mapped to (S̃, g̃2|˜S) via the boundary map ∂∞f |∂∞(˜S)

intersect at a single point φ̃S(x); φ̃S′ is constructed similarly. Otal shows that φ̃S

and φ̃S′ are π1-equivariant.

We first check that φ̃S and φ̃S′ extend to ∂∞f |∂∞(˜S) and ∂∞f |
∂∞(˜S′) respectively.

Indeed, consider a sequence of points {xi}i∈N that converge radially towards a

point x ∈ ∂∞S̃, so x = lim
i→∞

xi. It is possible to find a sequence of pairs of

geodesics (ξi, ηi), such that ξi ∩ ηi = xi and ai, bi, ci, di → x, where ai and bi are
the endpoints of ξi and ci and di are the endpoints of ηi (see Figure 8). Then since
∂∞f is continuous, lim

i→∞
∂∞f(ai) = ∂∞f(x), and the same is true for bi, ci, and di.

Then:

lim
i→∞

φ̃S(xi) = lim
i→∞

φ̃S((ai, bi) ∩ (ci, di))

= lim
i→∞

(∂∞f(ai), ∂
∞f(bi)) ∩ (∂∞f(ci), ∂

∞f(di)) = ∂∞f(x).

As before, (∂∞f(ai), ∂
∞f(bi)) denotes a geodesic with endpoints ∂∞f(ai) and

∂∞f(bi).

As a result, we conclude that ∂∞f |∂∞(˜S)= ∂∞φ̃S , ∂∞f |
∂∞(˜S′)= ∂∞φ̃S′ , and

∂∞φ̃S |˜S∩˜S′= ∂∞f |
∂∞(˜S∩˜S′)

= ∂∞φ̃S′ |
˜S∩˜S′ . In particular, if p ∈ ∂∞(S̃) ∩ ∂∞(S̃′),

then:

(5) ∂∞φ̃S(p) = ∂∞f |
˜S∩˜S′(p) = ∂∞φ̃S′(p).

Since isometries between Riemannian manifolds necessarily preserve geodesics,

φ̃S and φ̃S′ must map the branching geodesic γ̃ = (p, q) ⊂ (S̃ ∩ S̃′, g̃1) to geodesics

in (S̃, g̃2|˜S) and (S̃′, g̃2|˜S′) respectively. By Equation (5), φ̃S(γ̃) and φ̃S′(γ̃) must

share endpoints. Since S̃, S̃′ ⊂ (X̃, g̃2) and geodesics between two given boundary
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Figure 9. If φ̃S(x) �= φ̃S′(x), then
[∂∞f(a)∂∞f(a)∂∞f(bi)∂

∞(b′i)] �= 0, but a, a′, b, and b′

were chosen so that [aa′bb′] = 0, a contradiction since ∂∞f is
Mobius. As before, the pink geodesics are branching.

points in the CAT(-1) space (X̃, g̃2) are unique, φ̃S(γ̃) = φ̃S′(γ̃) necessarily. Thus,

for every branching geodesic γ̃ ⊂ (S̃, g̃1) ∩ (S̃′, g̃1), φ̃S(γ̃) = φ̃S′(γ̃).

It then suffices to show that for x ∈ γ̃, φ̃S(x) = φ̃S′(x). Suppose there exists

some x ∈ γ̃ where φ̃S(x) �= φ̃S′(x). By Proposition 3.2, if an isomorphism of
fundamental groups preserves the marked length spectrum of two CAT(-1) spaces,
then the induced map at infinity is Mobius. As a consequence, ∂∞f is Mobius. By
Lemma 3.7, for any x ∈ γ̃ there exists a pair of bi-infinite geodesics ξ = (a, b) ∈
(∂∞S̃ × ∂∞S̃) \Δ and ξ′ = (a′, b′) ∈ (∂∞S̃′ × ∂∞S̃′) \Δ such that [aa′bb′] = 0 (see
Figure 9). Note that (a, b) and (a′, b′) map to a pair of non-intersecting geodesics

since we assumed that φ̃S(x) �= φ̃S′(x).
Let ai, bi ∈ ξ, a′i, b

′
i ∈ ξ′, (ai, bi) → (a, b) and (a′i, b

′
i) → (a′, b′). The Paral-

lelogram Law for CAT(κ) spaces (see Exercise 1.16 of [5]) gives us the following
inequality:
(6)

g̃2(φ̃S(a
′
i), φ̃S(bi)) + g̃2(φ̃S(ai), φ̃S(b

′
i)) �= g̃2(φ̃S(ai), φ̃S(bi)) + g̃2(φ̃S′(a′i), φ̃S′(b′i)).

We therefore conclude that:

[∂∞f(a)∂∞f(a′)∂∞f(b)∂∞f(b′)] = lim
i→∞

[φ̃S(ai)φ̃S′(a′i)φ̃S(bi)φ̃S′(b′i)]

= lim
i→∞

g̃2(φ̃S(ai), φ̃S(bi)) + g̃2(φ̃S′(a′i), φ̃S′(b′i))

− g̃2(φ̃S(ai), φ̃S′(b′i))− g̃2(φ̃S(bi), φ̃S′(a′i))

(6)
�= 0 = [aa′bb′].

We then conclude that ∂∞f does not preserve the cross ratio, a contradiction.

It then follows that φ̃S and φ̃S′ must pointwise agree on γ̃, as claimed. Finally,
π1-invariance of Otal’s maps gives us our desired result. �
Lemma 3.9. Suppose that S and S′ are two closed surfaces in X, and suppose
S ∩ S′ = {Ci}ni=1, where each Ci is a chamber. Then for all Ci ∈ S ∩ S′, φS(x) =
φS′(x) where as before, φS : (S, g1|S) → (S, g2|S) and φS′ : (S′, g1|S′) → (S′, g2|S′)
are the isometries constructed by Otal.
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Proof. By Lemma 3.8, it suffices to prove φS(x) = φS′(x) for x ∈ Int(Ci), where

Ci ⊂ S ∩S′. Suppose x̃ is a lift of x inside the interior of C̃i, some polygonal lift of

Ci in X̃. Furthermore, suppose C̃i is adjacent to some γ̃1, a lift of a gluing curves
γ ∈ S ∩ S′.

We first find ξ = (w1, z1) and η = (w2, z2) on S̃, some lift of S in X̃, such that ξ

and η intersect at x̃. Recall that φ̃S(x̃)=(∂∞f(w1), ∂
∞f(z1))∩(∂∞f(w2), ∂

∞f(z2)),
where ∂∞f is the boundary homeomorphism induced by the identity on X. Simi-

larly, we choose ξ′ = (w′
1, z

′
1) and η′ = (w′

2, z
′
2) in a copy of S̃′ such that ξ′ ∩ η′ = x̃

so φ̃S′(x̃) = (∂∞f(w′
1), ∂

∞f(z′1))∩ (∂∞f(w′
2), ∂

∞f(z′2)). We want to use our choice

of ξ, ξ′, η, and η′ to show that φ̃S(x̃) = φ̃S′(x̃).
In order to construct ξ, consider a geodesic arc α = [x̃, γ̃1(a)] joining x̃ to some

point γ̃1(a) on γ̃1 ⊂ X̃. Furthermore, we require that γ̃1(a) is chosen so that α lies

entirely inside C̃i. To find ξ, extend α in S̃ via the exponential map to a geodesic

lying entirely inside a single lift of S, S̃. Similarly, construct ξ′ ⊂ S̃′ by extending

α to a geodesic lying completely inside S̃′. Along the same vein, construct η by

extending β = [x̃, γ̃1(b)] on S̃, where γ̃1(b) is another point on the image of γ̃1 and

β also lies entirely inside C̃i. Similarly, we can extend β in S̃′ to obtain η′. See
Figure 10 for an example of a choice of α and β given some x̃.

We thus have two pairs of geodesics ξ, η ⊂ S̃, and ξ′, η′ ⊂ S̃′. Let p−1({Ci})
denote the collection of lifts of chambers in {Ci}ni=1 = S∩S′ in X̃. Note that ξ and
ξ′ either agree on a geodesic arc [γ̃2(c), γ̃1(a)] (where γ̃2 is a lift of a gluing curve in
S ∩ S′) or a geodesic ray with endpoint γ̃1(a) and limit point y ∈ ∂∞(p−1({Ci})).
Similarly, η and η′ agree either on a geodesic arc [γ̃3(d), γ̃1(b)] or a geodesic ray
with endpoint γ̃1(b) and limit point z ∈ ∂∞(p−1({Ci})). For example, in Figure

10, ξ ⊂ S̃ and ξ′ ⊂ S̃′ agree on a geodesic arc [γ̃1(a), γ̃2(c)] while η ⊂ S̃ and η′ ⊂ S̃′

agree on a geodesic ray [γ̃1(b), y2).
Suppose that ξ and ξ′ agree on a geodesic arc [γ̃2(c), γ̃1(a)] ⊂ p−1({Ci}). By

Lemma 3.8, we know that we can define points x1 := φ̃S(γ̃1(a)) = φ̃S′(γ̃1(a)) and

x2 := φ̃S(γ̃2(c)) = φ̃S′(γ̃2(c)). Then it follows that φ̃S(ξ) and φ̃S′(ξ′) agree on the
unique geodesic arc between x1 and x2. In other words,

φ̃S(ξ ∩ ξ′) = φ̃S([γ̃1(a), γ̃2(c)]) = [x1, x2] = φ̃S′([γ̃1(a), γ̃2(c)]) = φ̃S′(ξ ∩ ξ′).

Suppose on the other hand that ξ and ξ′ agree on a geodesic ray [γ̃1(a), y). Again,

we can set x1 := φ̃S(γ̃1(a)) = φ̃S′(γ̃1(a)). Note that we can define y1 := ∂∞φ̃S(y) =

∂∞φ̃S′(y) since in the proof of Lemma 3.8, we determined that ∂∞φ̃S |S̃∩S′=

∂∞f |
S̃∩S′= ∂∞φ̃S′ |

S̃∩S′ . Since the geodesic between x1 and y1 is unique in X̃ ∪
∂∞(X̃), it then follows that φ̃S(ξ) and φ̃S′(ξ′) necessarily agree on a geodesic ray
with endpoints x1 and y1. Thus,

φ̃S(ξ ∩ ξ′) = φ̃S([γ̃1(a), y)) = [x1, y1) = φ̃S′([γ̃1(a), y)) = φ̃S′(ξ ∩ ξ′).

It then follows that φ̃S(ξ∩ξ′) and φ̃S′(ξ∩ξ′) agree, and the same argument holds for

φ̃S(η∩η′) and φ̃S′(η∩η′). We now show that φ̃(ξ∩ξ′) := φ̃S(ξ∩ξ′) = φ̃S′(ξ∩ξ′) and
φ̃(η∩η′) := φ̃S(η∩η′) = φ̃S′(η∩η′) intersect at a point x̃ ∈ φ̃S(S̃∩ S̃′) = φ̃S′(S̃∩ S̃′)
by doing some case work.
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Figure 10. We extend α = (x̃, γ̃1(a)) in the picture on the left

to ξ ⊂ S̃ and ξ′ ⊂ S̃′. Similarly, we extend β = (x̃, γ̃1(b)) where

b �= a to η ⊂ S̃ and η′ ⊂ S̃′. While ξ and ξ′ agree on a geodesic
arc [γ̃2(c), γ̃1(a)], η and η′ agree on a geodesic ray [γ̃1(b), y).

Figure 11. An illustration of Case 1; ξ ∩ ξ′ and η ∩ η′ are both
geodesic rays
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Figure 12. An example of Case 2; ξ ∩ ξ′ and η ∩ η′ are both
geodesic arcs

Figure 13. An example of Case 3; ξ ∩ η is a geodesic ray and
ξ′ ∩ η′ is a geodesic arc

(1) Case One: ξ ∩ ξ′ and η ∩ η′ are both geodesic rays. Suppose ξ ∩ ξ′ =
[p1, r) and η ∩ η′ = [p2, s), where p1 = γ̃1(a) and p2 = γ̃1(b) lie on a
branching geodesic γ̃1 and r, s ∈ ∂∞(p−1({Ci})). Additionally, suppose γ̃1
has endpoints p and q, p = lim

t→−∞
γ̃1(t), and q = lim

t→∞
γ̃1(t). Consider an

apartment A in X̃ that contains γ̃1, r, and s (e.g. S̃ or S̃′). By construction,
if without loss of generality a < b (so that p1 is “closer” to p and p2 is
“closer” to q), the order of points, according to some fixed orientation on
∂∞(A), will be p, q, r, s, and ∂∞f |A will preserve that order. Furthermore,
since the orientation of γ̃1 will be preserved under ∂∞f |A, it follows that

the geodesic rays [φ̃(p2), ∂
∞f(s)) = [φ̃(p2), ∂

∞φ̃(s)) and [φ̃(p1), ∂
∞f(r)) =

[φ̃(p1), ∂
∞φ̃(r)) will necessarily intersect (see Figure 11).

(2) Case Two: ξ ∩ ξ′ and η ∩ η′ are both geodesic arcs. Suppose ξ ∩ ξ′ =
[p1, p3] and η ∩ η′ = [p2, p4]. Let p and q be defined as before in case one.
As before, suppose γ̃1(a) = p1 ∈ ξ ∩ ξ′ and γ̃1(b) = p2 ∈ η ∩ η′ where a < b.
Additionally, suppose that γ̃2(c) = p3 and γ̃2(d) = p4 where d < c, and
lim

t→−∞
γ̃2(t) = s and lim

t→∞
γ̃2(t) = r. Again, one can find some apartment A
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(e.g. S̃ or S̃′) that contains γ1 and γ2, and as before, we have that ∂∞f |A is
a circle homeomorphism which preserves the cyclic order of the four-tuple
[p, q, r, s]. Since the orientation of γ̃1 and γ̃2 is, as before, preserved, it

follows that [φ̃(p1), φ̃(p3)] and [φ̃(p2), φ̃(p4)] intersect (see Figure 12).
(3) Case Three: ξ ∩ ξ′ or η ∩ η′ is a geodesic ray, and the other is a

geodesic arc. For the last case, suppose without loss of generality that
ξ ∩ ξ′ is a geodesic ray [p1, r) and η ∩ η′ is a geodesic arc [p2, p3]. Again,
suppose p1 = γ̃1(a) and p2 = γ̃1(b) for some a < b where γ̃1 has endpoints
p = lim

t→−∞
γ̃1(t) and q = lim

t→∞
γ̃1(t). Suppose p3 = γ̃2(c) where c ∈ R

and the endpoints of γ̃2 are s and t. Again, choose some apartment A

(e.g. S̃ or S̃′) that contains all five points (p, q, r, s, and t). Then, after
fixing an orientation, the points will be ordered p, q, r, s, t, and their
order will be preserved under ∂∞f |A. Again, since the orientation of γ̃1 is

fixed, it follows that [φ̃(p1), ∂
∞f(r)) = [φ̃(p1), ∂

∞φ̃(r)) and [φ̃(p2), φ̃(p3)]
will intersect. (See Figure 13.)

In conclusion, φ̃S(ξ ∩ ξ′) = φ̃S′(ξ ∩ ξ′) and φ̃S(η ∩ η′) = φ̃S′(η ∩ η′) intersect

at some point in φ̃S(p
−1({Ci})) = φ̃S′({p−1({Ci}). Since φ̃S(ξ ∩ η) = φ̃S(x̃),

φ̃S′(ξ′ ∩ η′) = φ̃S′(x̃) and φ̃S and φ̃S′ are injective, it follows that:

φ̃S′(x̃) = φ̃S′(ξ ∩ ξ′ ∩ η ∩ η′) = φ̃S′(ξ ∩ ξ′) ∩ φ̃S′(η ∩ η′) = φ̃S(ξ ∩ ξ′) ∩ φ̃S(η ∩ η′)

= φ̃S(ξ ∩ ξ′ ∩ η ∩ η′) = φ̃S(x̃).

By the π1(S) and π1(S
′)-equivariance of φS and φS′ respectively, it follows that

φS(x) = φS′(x). �
The proof of Proposition 3.1 then follows easily:

Proof of Proposition 3.1. As before, consider a minimal collection of closed surfaces
S that covers X. Consider any arbitrary S, S′ ∈ S. By Lemmas 3.8 and 3.9, φS

and φS′ pointwise agree on S ∩ S′. Since X is complete, convex, and compact, by
Lemma 3.6, one can thus patch the collection of isometries {φS}S∈S together to
obtain a global isometry φ : (X, g1) → (X, g2). �

4. The general case

We now tackle the general case of Theorem 1.3. We will begin by showing that
simple (not necessarily thick), NPC surface amalgams are NPC cube complexes.
Then, using some powerful machinery mentioned in Section 2.4, we deduce that
simple, negatively curved surface amalgams are QCERF. Next, we show that sim-
ple, thick, negatively curved surface amalgams can be covered by finitely many
immersed closed surfaces. Finally, since surface subgroups of π1(X) are quasi-
convex, we use Scott’s theorem (Theorem 2.12) to promote the immersed closed
surfaces to embedded closed surfaces in finite-sheeted covers, allowing us to reduce
to the base case.

As promised, we first prove the following:

Lemma 4.1. Let X be a simple, NPC surface amalgam. Then X is a NPC cube
complex.

Proof. We will realize X as a cube complex and then apply the combinatorial link
condition to show X is NPC. First, we assume X is negatively curved. Since the
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gluing geodesics of X are simple and disjoint, there exists a pants decomposition
P of X such that the gluing curves are contained in the set of pants curves in P.
We first realize each pair of pants P ∈ P as cube complex:

Figure 14. A pair of pants as a cube complex. The boundary
components are red. The link lk(v) is shown in blue, lk(u) and
lk(w) are shown in purple, and lk(x) is in orange.

Note that each boundary component of P contains four vertices. Given a col-
lection of boundary components {bi} identified in X, one can subdivide each bi so
that the vertices are aligned when the bi are glued together. The result is a cube
complex structure for X.

We claim that for every vertex v in the cube complex structure of X, lk(v) is
triangle-free. Indeed, we list all the possibilities:

(1) If v is one of two vertices in each pair of pants adjacent to six edges, lk(v)
will be a hexagon (see blue link in Figure 14);

(2) If v is one of three vertices in each pair of pants adjacent to four edges,
then lk(v) will be a square (see orange link in Figure 14);

(3) If v lies on a pants curve not attached to any other pants curve, then its link
is a graph with three vertices and two edges (see purple links in Figure 14);

(4) Finally, if v lies on a pants curve glued to at least one other pants curve,
then lk(v) is a union of squares all sharing two vertices lying on boundary
components of the pants decompositions. For instance, if u and w are
identified in Figure 14, then the union of the purple links would form a
square.

In all four cases, lk(v) is triangle-free, and thus would not span a simplex of
dimension greater than 1. Then all the links are flag complexes, as desired.

The generalization to the NPC setting follows easily; one can naturally represent
each cylindrical chamber with a square with one pair of opposite sides identified.
Subdivide the unidentified sides so that each side has four vertices, including the
pair of identified vertices on the corners of the original square. As before, attach
boundary components together so that vertices are identified with other vertices,
giving the surface amalgam a cube complex structure. Now, the links of each vertex
on the cylinders can only fall under case (3) or (4) from the aforementioned list,
thus satisfying the combinatorial link condition. �
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Next, we use Lemma 4.1 to show that the fundamental group of a simple, nega-
tively curved surface amalgam is QCERF:

Lemma 4.2. Let X be a simple, negatively curved surface amalgam. Then π1(X)
is QCERF.

Proof. We collect a few useful facts and observations:

(1) Fn ∈ QVH for all n ∈ N. Recall that by Theorem 2.15, a torsion-free
Gromov hyperbolic group is in QVH if and only if it is virtually special.
From this, we can naturally deduce that any finite rank free group, which
is subgroup separable by a classic theorem by Hall [23], is QCERF and
therefore virtually special, and in QVH.

(2) Infinite cyclic subgroups of π1(X) are quasiconvex. This follows from the
fact that if a group G (such as π1(X)) is Gromov hyperbolic, every infinite
cyclic subgroup of G is quasiconvex.

(3) The fundamental group of a surface amalgam is torsion-free. Due to Propo-
sition 2 of [39], every finite order element of an amalgamated product A∗CB
(resp. HNN extension A∗C) is conjugate to an element of A or B (resp.
A). Since free groups are torsion free, one can inductively show that the
fundamental group of any surface amalgam is torsion-free.

By definition of QVH, (1) and (2), π1(X) ∈ QVH. By (3), Gromov hyperbolicity
of π1(X), and Theorem 2.15, π1(X) virtually special. Thus, by Lemma 4.1 and
Theorem 2.13, it follows that π1(X) is QCERF as well. �

We briefly mention Corollary 4.2.1, which could be of independent interest:

Corollary 4.2.1. Let (X, g) be a simple, negatively curved surface amalgam. Then
π1(X) is residually finite.

Finally, we show that every chamber is embedded in an immersed closed surface
in X:

Lemma 4.3. Let (X, g) be a simple, thick, negatively curved surface amalgam.
Then each chamber in (X, g) can be included in an embedded closed surface in

some finite-sheeted cover (X̂, ĝ) of (X, g).

Proof. We claim that each surface amalgam can be covered by a disjoint union of
immersed closed surfaces. We first construct this collection of closed surfaces.

Take two copies of each chamber in Ci ⊂ X to obtain two identical collections
of chambers {C1

i } ∪ {C2
i }. Consider a gluing geodesic γ ⊂ X, and suppose that

{bk} ⊂ X is the collection of boundary components identified with γ in X indexed
by some collection of natural numbers k = 1, 2, . . . , N . We will label the two
copies of each bk with b1k and b2k. For 1 ≤ k ≤ N , identify b1k with b2k+1, where
k + 1 is taken modulo N . Repeat the same process for every gluing curve in X
so that each boundary component of each chamber is glued to exactly one other
boundary component. Due to the thickness assumption, the result is a (possibly
disconnected) collection of finitely many closed surfaces {Ns}. An example of the
process is illustrated in Figure 15.
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Figure 16. Given two points x ∈ γ1 and y ∈ γ2, we illustrate
examples of hemispheres of unit tangent vectors based at x and y.
Here, S′

x = S′
xC1 ∪ S′

xC2 ∪ S′
xC4 and S′

y = S′
yC2 ∪ S′

yC3 ∪ S′
yC5.

Figure 15. An immersion of a closed surface into a surface amal-
gam X using the construction from the proof of Lemma 4.3

We now show that there is an immersion f : {Ns} � X, given by the projection
of {Ns} back onto X. More specifically, if y ∈ {Ns}\ ({b1k}∪{b2k}), then it projects
to the interior of a chamber in X. Otherwise, y projects to a point on a gluing
geodesic in X.

Usually, an immersion between manifolds is defined as a map with a locally in-
jective derivative. An analogous definition holds for surface amalgams, but we need
to define the local unit tangent bundle carefully. Let S′

xC be the open hemisphere
of unit tangent vectors based at x pointing inside a chamber C containing or ad-

jacent to x. Then define S′
x :=

m⋃
i=1

S′
xCi, the collection of the m open hemispheres

of unit tangent vectors based at x and pointing into the m chambers adjacent to
or containing x (see Figure 16). Note that if x ∈ X lies on the interior of a cham-
ber, S′

x(X) resembles the usual circle of unit tangent vectors based at a point on a
surface.
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With this definition in mind, note that for all y ∈ {Ns}, Dfy : Ty({Ns}) →
S′
f(y)(X) is injective. We point out that injectivity comes from the fact that there

do not exist b1k and b2k which are glued together in {Ns}. In conclusion, each
chamber C sits inside an immersed closed surface in X, which we will call NC .

The preimage of NC in the universal cover X̃ under the covering map is a convex
set, as it is a union of polygons with geodesic boundary. As a consequence, π1(NC)
is a quasiconvex subgroup of π1(X). Since π1(X) is QCERF, there is some finite-

sheeted cover X̂ of X such that NC ⊂ X̂C embeds as a closed surface due to

Theorem 2.12. Given a collection of finite-sheeted covers {X̂C}, there is a common

finite-sheeted cover X̂ such that every chamber C embeds in a closed surface, as the
intersection of a finite-index subgroup is still a finite-index subgroup. This proves
the lemma. �
4.1. Proof of Theorem 1.3. We now have all the ingredients needed for proving
Theorem 1.3.

Proof. Suppose (X, g1) and (X, g2) have the same marked length spectra. Suppose
every chamber in X can be included into a closed surface. Then by Proposition
3.1, (X, g1) and (X, g2) are isometric via a map isotopic to identity, φ : (X, g1) →
(X, g2).

Otherwise, by Lemma 4.3, there exists some finite-sheeted cover X̂ of X such

that every chamber is embedded in X̂. Then by Proposition 3.1, there exists an

isometry isotopic to the identity φ̂ : (X̂, ĝ1) → (X̂, ĝ2). Recall that φ̂ is constructed

by projecting the π1(X̂)-equivariant isometry φ̃ : (X̃, g̃1) → (X̃, g̃2) between copies

of the universal cover X̃ of both X and X̂. By construction, φ̃ is also π1(X)-
equivariant, so there exists some isometry φ : (X, g1) → (X, g2) isotopic to the
identity as well, as desired. �

5. Appendix

The main purpose of this appendix is to prove the following statement, which is
essential to the proof of Lemma 3.5:

Proposition 5.1. The geodesic flow map on (Gromov) hyperbolic P-manifolds is
ergodic with respect to the Bowen-Margulis measure.

Notice that for the purposes of the proof of Lemma 3.5, it does not really matter
what measure the geodesic flow map is ergodic with respect to. We remark that
in the case of symmetric spaces, the Bowen-Margulis measure coincides with the
Liouville measure.

The ideas and terminology of this section are mostly taken from [27], which we
give a summary of for the convenience of the reader. We remark that we can also
deduce ergodicity of the geodesic flow map from general theory in the setting of
CAT(0) spaces with rank-one axes developed in [37], but for simplicity, we stick to
the ideas in [27].

For the rest of this subsection, let (X, d) be a proper, connected Gromov hy-
perbolic space under a proper (preimages of compact sets are compact), non-
elementary, isometric action by a group Γ and ∂∞(X, d) be its visual boundary,
the set of equivalence classes of asymptotic geodesic rays (see Section 2.3 for de-
tails). Then the (Gromov) hyperbolic compactification X of X may be defined as
X = X ∪ ∂∞(X).
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Following [27], we impose two additional assumptions:

Assumption 5.2 (Uniqueness of geodesics). For all x1, x2 ∈ X, there exists a
unique geodesic [x1, x2] joining them.

Assumption 5.3 (Existence of convergent geodesic rays). If α1 and α2 are as-
ymptotic (e.g. they lie within bounded distance of each other) geodesic rays, then
there exists some c > 0 such that:

lim
t→∞

d(α1(t), α2(t+ c)) = 0.

We remark that both assumptions hold if (X, d) is locally CAT(-1).

5.1. Patterson-Sullivan measures. We now define a family of measures {μp}p∈X

on ∂∞(X) which are defined for every point p ∈ X. Intuitively, such measures,
called conformal densities, measure the proportion of elements of Γx = {γx|γ ∈ Γ}
that land within a specified subset of ∂∞(X).

Given a point a ∈ ∂∞(X) and x, y ∈ X, we set:

Ba(x, y) = lim
t→∞

d(x, r(t))− d(y, r(t)),

where r : R → X is a geodesic ray with endpoint a. Sometimes in the literature,
Ba(x, y) is called the horospherical distance between x and y, and Ba, which does
not depend on the choice of r(t), is sometimes known as the Busmann cocycle
function.

Definition 5.4. A family {μp}p∈X of finite Borel (Radon) measures on ∂∞(X) is
called a conformal density of dimension δ if:

(1) For all γ ∈ Γ, γ∗μp = μγ·p (μp is Γ-invariant);
(2) For all p, q ∈ X and a ∈ ∂∞(X), μp and μq are equivalent with Radon-

Nikodym derivative

dμq

dμp
(a) = e−δBa(x,y).

One can define a quasiconformal density of dimension δ by relaxing the second
condition in Definition 5.4 to say for all p, q ∈ X and a ∈ ∂∞(X), there exists some
C ≥ 1 such that:

1

C
e−δBa(x,y) ≤ dμp

dμq
(a) ≤ Ce−δBa(x,y).

The Poincare series associated to Γ is the series P (x, s) =
∑
γ∈Γ

esd(x,γ.x), where

x ∈ X and s ∈ R. There is some δΓ ∈ R aptly named the critical exponent of
Γ. The series converges if s < δΓ and diverges when s > δΓ; if s = δΓ, the series
could either converge or diverge (see Proposition 5.3 of [11]). Note that if X is a
proper geodesic space and X/Γ is compact, then δΓ is finite (see Proposition 1.7
of [6]). Furthermore, if the action of Γ on X is non-elementary, then the critical
exponent is non-zero. Thus, in the case where X is a simple, thick P-manifold and
Γ = π1(X), δΓ is non-zero and finite.

While the existence of conformal densities is not guaranteed for a Gromov hy-
perbolic space (X, d), one can guarantee the existence of quasiconformal densities
given that the critical exponent δΓ is a finite positive number (as is the case when
X is a simple, thick P-manifold), summarized in Theorem 5.5. The limit set of Γ,
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the set of accumulation points in ∂∞(X) of Γx for some (any) x ∈ X, is denoted
by ΛΓ.

Theorem 5.5 ([11, Theorem 5.4]). Suppose a group Γ acts properly discontinuously
via isometries on (X, d), a proper (Gromov) hyperbolic metric space (and therefore
δΓ ∈ (0,∞)). Then there exists a quasiconformal density of dimension δΓ supported
on ΛΓ.

For every point x ∈ X, Cooernart constructs a Patterson-Sullivan measure μx

from the quasiconformal density of dimension δΓ. Its construction depends on
whether P (x, s) converges or diverges at s = δΓ; we refer the reader to the proof
of Theorem 5.4 in [11] for details. In particular, if Γ acts convex cocompactly on
X, then P (x, s) diverges when s = δΓ (see Corollary 7.3 of [11]) and the Patterson-
Sullivan measure is defined as the weak limit of probability measures:

μx = lim
n→∞

1∑
γ∈Bn

e−δΓd(x,γ.x)

∑
γ∈Bn

e−δΓd(x,γ.x)Diracγ.x,

where Bn = {γ ∈ Γ|γ.o ∈ B(o, n)} for some fixed o ∈ X. Furthermore, he proves
that supp(μx) = ΛΓ ⊆ ∂∞(X).

Next, one can use the Patterson-Sullivan measures to define measures on ∂∞(X)
× ∂∞(X) \Δ.

5.2. Bowen-Margulis measures. Given μx with density δ, Kaimanovich defines
a Γ-invariant measure on ∂∞(X)× ∂∞(X) \Δ (see Section 2.4.1 in [27]):

dνx(a, b) = dμx(a)dμx(b)(e
〈a,b〉x)2δ =

dμx(a)dμx(b)

(g∞,x(a, b))
2δ
,

where a, b ∈ ∂∞(X), x ∈ X and g∞,x is the visual metric from Definition 2.7.

One can check that due to the scale factor (e〈a,b〉x)2δ, the construction of νx is
independent of choice of basepoint. We can then denote ν = νx where x is any
arbitrary point in X. We can thus define a Γ-invariant Radon measure on ∂∞(X)×
∂∞(X) \Δ, which we will also denote as ν.

While ν is defined on ∂∞(X)× ∂∞(X) \Δ, there is a natural extension of ν to
a measure m on SX = (∂∞(X)× ∂∞(X) \Δ)× R:

m = ν × dt,

where dt is the usual Lebesgue measure on R. Note that m descends to a measure,
mΓ, on SX/Γ.

Suppose that X̃ is a (Gromov) hyperbolic covering space with Γ its deck group.

Unsurprisingly, for a Gromov hyperbolic metric space X = X̃/Γ, there is a one-
to-one correspondence between geodesic currents, Γ-invariant Radon measures on

∂∞(X) × ∂∞(X) \ Δ, and Radon measures on SX = SX̃/Γ that are invariant
under the geodesic flow (see Theorem 2.2 of [27]). Thus, since ν is Γ-invariant, mΓ

is invariant under geodesic flow.

Definition 5.6 (Bowen-Margulis measures). The geodesic flow-invariant measure
mΓ defined above is a Bowen-Margulis measure on SX/Γ.

Remark 5.7. Note that dν(a, b) = dν(b, a), so it follows that ν is invariant under the
action of Z/2Z. The Bowen-Margulis measure thus provides a “natural” example of
a geodesic current on X. Its relationship with another naturally-arising current, the
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Liouville current, is an interesting open question for spaces that are not symmetric.
While we will not define Liouville currents in this paper, we refer the reader to
Example 5.4 of [9] for a definition suited to compact quotients of Fuchsian buildings
which extends to the surface amalgam setting.

5.3. Proof of Proposition 5.1. We are now ready to state a key theorem from
[27]:

Theorem 5.8 ([27, Theorem 2.6]). Let X̃ be a (Gromov) hyperbolic covering space
satisfying Assumptions 5.2 and 5.3. Let μx be a Patterson-Sullivan measure on
∂∞(X) used to construct the geodesic current ν from before and mΓ the corre-
sponding Bowen-Margulis measure that is invariant under geodesic flow on SX.
Then either:

(1) μx(ΛΓ) = 1 and the geodesic flow on SX = SX̃/Γ is ergodic with respect
to mΓ or

(2) μx(ΛΓ) = 0 and the geodesic flow on SX is completely dissipative with
respect to mΓ.

In the case where X is a P-manifold with a locally CAT(-1) metric, recall from
Theorem 5.5 that supp(μx) = ΛΓ; therefore, the geodesic flow on SX is ergodic
with respect to mΓ, as desired.

5.3.1. An application of Proposition 5.1. One application of the ergodicity of ge-
odesic flow is there exists v ∈ SX with dense orbit under the geodesic flow map.
Indeed, recall the Birkhoff Ergodic Theorem:

Theorem 5.9 (Birkhoff Ergodic Theorem). Let (Y,B, μ) be a probability space,
and let T : Y → Y be an ergodic measure-preserving transformation. Let A ∈ B be
a measurable set of positive measure μ(A) > 0. Then for all f ∈ L 1(Y,B, μ) and
μ-almost everywhere y ∈ Y :

(7) lim
n→∞

1

n

n−1∑
k=0

f(T k(y)) =

∫
fdμ.

If Γ is a non-elementary discrete group acting properly and cocompactly by
isometries on a Gromov hyperbolic space X, then mΓ is finite (see Corollary 4.17
and Section 3.2 of [12]) and in particular can be scaled to a probability measure, so
we can apply the Birkhoff Ergodic Theorem. For example, if X is a locally CAT(-1)
P-manifold and Γ = π1(X), then we can apply the Birkhoff Ergodic Theorem. By
the Hopf-Tsuji-Sullivan Theorem (Theorem 4.2) and Proposition 4.4 of [12], since
the geodesic flow map is ergodic with respect to mΓ, the flow map is conservative,
so mΓ has full support on SX/Γ.

In particular, if f is the indicator function χA,
∫
fdμ = μ(A) while the left hand

side of Equation (7) denotes the frequency that the orbit of T visits A. In our
scenario, T k is the geodesic flow map φk on SX, which is invariant with respect to
the scaled probability measure ofmΓ with full support on SX. We thus conclude for
every simple, thick locally CAT(-1) P-manifold, there exists a geodesic in SX that
intersects any open neighborhood of any u ∈ SX (where X satisfies the conditions
of Theorem 5.9), as every open set of SX has non-zero measure.
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[36] Jean-Pierre Otal, Sur la géometrie symplectique de l’espace des géodésiques d’une variété
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