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Abstract

Two negatively curved metric spaces are iso-length-spectral if they have the same multisets
of lengths of closed geodesics. A well-known paper by Sunada provides a systematic way of con-
structing iso-length-spectral surfaces that are not isometric. In this paper, we construct examples
of iso-length-spectral surface amalgams that are not isometric, generalizing Buser’s combina-
torial construction of Sunada’s surfaces. We find both homeomorphic and non-homeomorphic
pairs. Finally, we construct a noncommensurable pair with the same weak length spectrum, the
length set without multiplicity.

1 Introduction

Recall that the (unmarked) length spectrum of a metric space (X, g) is the ascending multiset of
positive real numbers representing lengths of closed geodesics in (X, g). We say that two metric
spaces are iso-length-spectral if they have the same length spectra.

The question of whether there exist iso-length-spectral manifolds that are not isometric has a
long history. The first examples of such objects are due to Milnor (see [Mil64]), who constructed
two flat, 16-dimensional non-isometric, iso-length-spectral tori. In [Vig80], Vignerás constructed
examples of hyperbolic surfaces that are iso-length-spectral but not isometric. Both Vignerás’s
and Milnor’s constructions are heavily number theoretic and, one could argue, difficult to describe
geometrically. In [Sun85], Sunada developed a celebrated, systematic, and more geometric way of
constructing hyperbolic iso-length-spectral surfaces. In [Bus86] (and [Bus92] for the genus 6 case),
Buser uses [Sun85] to construct pairs of iso-length-spectral, non-isometric surfaces of genus ≥ 5.

Due to the combinatorial nature of Buser’s approach, one can apply his construction to metric
spaces outside the setting of Riemannian manifolds. We explore such objects in this paper, and show
that in contrast to the hyperbolic surface case, Buser’s interpretation of the Sunada construction
sometimes yields examples of non-homeomorphic iso-length-spectral objects.

Let (X, g) be a simple, thick hyperbolic surface amalgam, which, roughly speaking, is con-
structed by isometrically gluing together compact, hyperbolic surfaces with boundary together
along their boundary components. We refer the reader to Definition 2.3 of [Laf07] for a more pre-
cise definition; note that in his paper, he refers to surface amalgams as “2-dimensional P-manifolds”.
We now state our first result:

Theorem 1.1. There exist iso-length-spectral surface amalgams equipped with piecewise hyperbolic
metrics that are not isometric. Furthermore, there exist non-homeomorphic iso-length-spectral pairs
of hyperbolic surface amalgams.

We remark that in contrast to the surface amalgam case, there cannot exist non-homeomorphic
iso-length-spectral pairs of hyperbolic closed surfaces, as the length spectrum completely determines
the genus of a surface (see [Cha84]). In the setting of 3-manifolds, on the other hand, applications of
the Sunada method (e.g. [Spa89], [Rei92], [McR14]) have been shown to yield hyperbolic, iso-length-
spectral 3-manifolds which are non-isometric and thus non-homeomorphic due to Mostow Rigidity.
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This provides further evidence towards the fact that surface amalgams share characteristics of both
surfaces and 3-manifolds (see also [HST20]).

We say that two metric spaces are metrically commensurable if they share some isometric
finite-sheeted cover. Notably, both main sources of iso-length-spectral, non-isometric hyperbolic
manifolds (from [Vig80] and [Sun85]) yield metrically commensurable manifolds. This led Reid to
pose an interesting open question in [Rei92]:

Question 1.2 (Reid). Do there exist two iso-length-spectral hyperbolic manifolds which are not
metrically commensurable?

It is known that all compact iso-length-spectral arithmetic surfaces and 3-manifolds are neces-
sarily metrically commensurable (see [Rei92] and [CHLR08]). In [LSV06], in contrast, the authors
find large families of locally symmetric, iso-length-spectral manifolds of higher rank that are not
metrically commensurable. However, the question of whether there exist iso-length-spectral, met-
rically non-commensurable hyperbolic surfaces is still open.

We say two topological spaces are topologically commensurable if they share homeomorphic (as
opposed to isometric) finite-sheeted covers. Note that if two metric spaces are not topologically
commensurable, they are automatically not metrically commensurable. For the remainder of the
paper, when we say “commensurable,” we mean topologically commensurable.

We follow the terminology from [PR15] and define the weak length spectrum of a locally CAT(−1)
metric space to be a collection of lengths of closed geodesics without multiplicity. If two metric
spaces have the same weak length spectrum, we say they are weak length isospectral. Notice that
since the weak length spectrum is a subset of the length spectrum, weak length isospectrality is a
weaker condition than length isospectrality.

In fact, in [LMNR07], the authors show that examples of weak length isospectral (called “length
equivalent” in their paper) hyperbolic manifolds that are not iso-length-spectral exist in great
abundance. The examples they construct arise from sequences of manifolds in towers of covers so
that the weak length isospectral pairs have different volumes. In fact, the ratios between volumes
of consecutive terms Mn+1 and Mn in the sequences tend to infinity.

We are now ready to state the second main result of the paper:

Theorem 1.3. There exist weak length isospectral surface amalgams equipped with piecewise hy-
perbolic metrics that are not (topologically) commensurable.

We remark that it is impossible to find pairs of surfaces that are not topologically commensu-
rable, as all closed surfaces are commensurable as topological objects. The proof of Theorem 1.3
relies on work from [Sta17] and [DST18] which is related to the abstract commensurability clas-
sification problem of right-angled Coxeter groups. Furthermore, in contrast to the examples from
[LMNR07], the weak length isospectral pairs from Theorem 1.3 have the same volume.

Outline of the paper. We now give a brief outline of the paper. We begin with a brief review
of Buser’s techniques for constructing iso-length-spectral, non-isometric surfaces in Section 2. We
continue with a construction of pairs of homeomorphic, iso-length-spectral, non-isometric surface
amalgams, followed by a construction of a pair that is not homeomorphic using Lafont’s criteria
from [Laf07] in Section 3. Instead of using Buser’s transplantation technique, we count copies of
“identical” closed geodesics. Finally, in Section 4, we construct a pair of weak length isospectral
surfaces which are not commensurable using criteria from [DST18]. This time, we prove weak
length isospectrality using Buser’s transplantation technique.
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2 Buser’s Techniques

We rely heavily on the techniques from [Bus86], which we briefly sketch.

2.1 Buser’s original construction

Buser constructs two iso-length-spectral but non-isometric hyperbolic genus 5 surfaces by gluing
together identical copies of right-angled octagons, which he calls building blocks. The gluing scheme
is shown below in Figure 1. His construction is modeled off Sunada’s construction using almost
conjugate subgroups of (Z/8Z)× ⋉ (Z/8Z)+ given by Gerst in [Ger70] (see Example 1 of Section 1
of [Sun85]).

Figure 1: Gluing schemes for iso-length-spectral, non-isometric a genus 5 surfaces from [Bus86].

We now briefly summarize the idea behind showing Buser’s genus 5 surfaces are iso-length-
spectral but not isometric. We do not detail the higher genus cases, but the ideas are similar with
variations in how the building blocks are constructed.

Buser’s surfaces are not isometric. The building blocks Bi (1 ≤ i ≤ 8) have three sets of
identical edges with lengths a, b and c (see Figure 1). By adding an extra restriction on the lengths
b and c, Buser is able to conclude the systoles of S1 and S2 are exactly geodesics of length c:

Lemma 2.1 (Lemma 3.3, Proposition 3.4 of [Bus86]). Let 0 < c < b < 1. Then any geodesic curve
δ of Bi which connects two sides of Bi has length ℓ(δ) ≥ c. Equality holds only if δ is a side (of
length c) of a building block.

As a result, S1 and S2 each have sets of four systoles {γi} and {γ′i} (1 ≤ i ≤ 4) respectively
of length c. In S1, the γi are between Bi and Bi+1 for i ∈ {1, 3, 5, 7}. On the other hand, in S2,
the γ′i are between B′

i and B′
i+1 for i ∈ {2, 4, 6, 8} (where, as always, i + 1 is taken mod 8). One
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can easily check that cutting along the multicurve {γi} in S1 yields a single connected component
that is topologically a torus with 8 boundary components, while cutting along {γ′i} ⊂ S2 yields two
connected components, each of which is topologically a torus with four boundary components. If
S1 and S2 were isometric, cutting along their systoles would yield homeomorphic connected com-
ponents, which is clearly not the case here.

Buser’s surfaces are iso-length-spectral. Next, for every closed geodesic in S1, Buser con-
structs one in S2 with the same length (and vice versa) using a technique he calls transplantation.
Given a closed geodesic γ ⊂ S1 with a starting point p in the interior of some building block
Bi ⊂ S1, Buser specifies which building block B′

k(i) ⊂ S2 one should start constructing γ′ ⊂ S2 in

so that ℓ(γ) = ℓ(γ′). He uses the following set of rules, which depend on the parities of #a and
#b, defined below:

Algorithm 2.2 (5.3 (Initiation), [Bus86]). Let #a and #b be the number of times a curve γ
transversely crosses sides of lengths a and b respectively, and let Bn1 (resp. B′

n′
1
) denote the

building blocks in S1 (resp. S2) in which to initiate γ (resp. γ′).

1. If #a is even, take n1 = n′
1;

2. If #a is odd and #b is even, take n′
1 = n1 + 1;

3. If #a and #b are both odd, take n′
1 = n1 + 2.

To construct γ′, one simply decomposes γ into geodesic segments {γj}Nj=1 such that each γj is
contained completely in some building block Bj and γ1 and γN are contained in the same building
block and share an endpoint at p. Then, for each γj , taking advantage of the fact that the building
blocks in S1 and S2 are all identical, one can construct a γ′j ⊂ B′

j identical to each γj ⊂ Bj .
Buser shows that following Algorithm 2.2, the set of {γ′j} will always close up to a geodesic loop.
Furthermore, since ℓ(γj) = ℓ(γ′j) for all j, it follows that ℓ(γ) = ℓ(γ′), as desired. The same set of
initiation rules also applies in the other direction (constructing a geodesic in S1 given one in S2).

2.2 Buser’s techniques in the surface amalgam setting

We now specify some notation and establish some facts used in the iso-length-spectrality proofs in
the remainder of the paper. The results and definitions in this section are either heavily inspired
by or taken directly from [Bus86].

Let βi (resp. β′
i) be a connected geodesic segment in S1 (resp. S2) which can be written as

a union
L⋃

k=1

γi,k (resp.
L⋃

k=1

γ′i,k ) of segments each completely contained in a single building block.

We will see later that every closed geodesic in a surface amalgam constructed in this paper can be
written as a concatenation of βi’s or β

′
i’s. We define

δi(k) = n′
i,k − ni,k (mod 8), (1)

where ni,k (resp. n′
i,k) is the index of the building block containing γi,k (resp. γ′i,k). Thus, when

we say “initiate β′
i with the rule δi(0) = N ,” we mean that we will set n′

i,0 equal to ni,0 + N . In
other words, if βi starts in Bni,0 ⊂ S1, then β′

i will start in B′
ni,0+N ⊂ S2.

For the convenience of the reader, we list observations from Section 5 of [Bus86] used to prove the
validity of Algorithm 2.2, which may be checked. We will also use these observations extensively in
iso-length-spectrality proofs in the remainder of the paper. Note that while Buser works with closed
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surfaces, the segments βi and β′
i are contained entirely within closed surfaces, so the observations

are still applicable in the setting of surface amalgams.

Lemma 2.3 (c.f. Proof of 5.3 in [Bus86]). Let δi, βi, and β′
i be as above. Then the following changes

to δi are observed whenever βi and β′
i cross edges of building blocks of S1 and S2 respectively:

1. Crossing a side of length a. If δi(k) is even, then δi(k + 1) = δi(k) + 4 (mod 8). If δi(k) is
odd, then δi(k + 1) = δi(k).

2. Crossing a side of length b. If δi(k) = 0 or 4, δi(k + 1) = δi(k). If δi(k) = ±2, δi(k + 1) =
δi(k) + 4 (mod 8). There are other possible scenarios, but only these are used in this paper.

3. Crossing a side of length c. Regardless of the value of δi(k), δi(k + 1) = δi(k).

2.2.1 Translated and transplanted copies

Next, we define translated copies of curves, which, roughly speaking, are locally isometric copies of
a curve on the same surface (either S1 or S2). In contrast, a transplanted copy of a curve in S1 is
a curve on the other surface S2 which has the same length (and vice versa). To formalize this, we
first present a definition from [Bus86]:

Definition 2.4 (c.f. Definition 5.2, [Bus86]). Let β and β′ be two curves in S1 or S2 which have the

same length. Suppose β =
L⋃

k=1

βk, where each βk is a curve contained entirely in a single building

block. Similarly, suppose β′ can be written as the union β′ =
L⋃

k=1

β′
k. Then β and β′ are locally

congruent if there exist local isometries {φk}Lk=1 such that φk(N(βk)) = N(β′
k) for every k ∈ [1, L],

where N(βk) and N(β′
k) are neighborhoods of βk and β′

k respectively.

We can then define translated copies:

Definition 2.5 (Translated copies of geodesic segments). Given a geodesic segment β =
L⋃

k=1

βk in

S1, a translated copy of β is a curve α =
L⋃

k=1

αk ⊂ S1 which is locally congruent to β. We also

require that if β begins (resp. ends) on an edge with a certain label, then α begins (resp. ends) on
an edge with the same label. Furthermore, if βk and αk are contained in the building blocks Bn(k)

and Bm(k) respectively, then for every 1 ≤ k ≤ L − 1, Bm(k) meets Bm(k+1) along an edge with
the same label as that of the edge where Bn(k) and Bn(k+1) meet. One can also replace S1 in the
definition with S2.

Following terminology from Section 11.6 of [Bus92], we also define the following.

Definition 2.6 (Transplanted copies of geodesic segments). Given a geodesic segment β =
L⋃

k=1

βk

in S1, a transplanted copy of β is a curve β′ =
L⋃

k=1

β′
k ⊂ S2 which is locally congruent to β. We also

require that if β begins (resp. ends) on an edge with a certain label, then β′ begins (resp. ends)
on an edge with the same label. Furthermore, if βk and β′

k are contained in the building blocks
Bn(k) ⊂ S1 and B′

n(k) ⊂ S2 respectively, then for every 1 ≤ k ≤ L − 1, B′
n(k) meets B′

n(k+1) along
an edge with the same label as that of the edge where Bn(k) and Bn(k+1) meet.
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3 Proof of Theorem 1.1

We now proceed with our proofs of the existence of iso-length-spectral, non-isometric examples.

3.1 Homeomorphic, non-isometric surface amalgams

We first construct two homeomorphic, iso-length-spectral, non-isometric surface amalgams.

Construction 3.1. Consider S1 and S2 from [Bus86]. In each surface, consider the two closed
geodesics of length 2a obtained from concatenating the top right edge of length a on B2 (resp. B6)
with the top left edge of length a on B3 (resp. B7). We do the same for the bottom edges. We
then identify all the red edges of length a on B2 and B6 (resp. B′

2 and B′
6) from Figure 2 and all

blue edges on B3 and B7 (resp. B′
3 and B′

7).

Figure 2: Homeomorphic, non-isometric, iso-length-spectral surface amalgams. The gluing curve
consists of two closed geodesics of length 2a identified together. Orientations of the gluing curves
are specified in the figure. Geodesic segments that are the same colors in X1 are identified; the
same is true for X2. Cutting along the gluing geodesics and the systoles yields two connected
components (in yellow and blue) for X1 but only one connected component for X2.

Proposition 3.2. The surface amalgams X1 and X2 from Construction 3.1 are iso-length-spectral
and homeomorphic, but not isometric.

Proof. X1 and X2 are homeomorphic. Note that cutting along the four geodesics that are
identified will yield a genus 3 surface with four boundary components of length 2a for both S1 and
S2. The two loops of length 2a are nonseparating for both S1 and S2 so cutting along them yields
homeomorphic surfaces S3,4. Since there is bijection between homeomorphic chambers of X1 and
X2, they are homeomorphic due to [Laf07].
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Figure 3: X1 andX2 are both homeomorphic to the above surface amalgam, created from identifying
two non-separating closed geodesics on Buser’s genus 5 example.

X1 and X2 are not isometric. In order for two surface amalgams to be isometric, there must be
a bijection between isometric chambers due to the bijective correspondence between homeomorphic
chambers (see [Laf07]). As with the examples in [Bus86], the only systoles in C1 and C2, chambers
in X1 and X2 respectively, are the four closed geodesics of length c. Cutting along these systoles
yields two connected components for C1 and one connected component for C2; thus, C1 and C2

cannot be isometric.

X1 and X2 are iso-length-spectral. It suffices to consider geodesics that do not intersect the
gluing curve, as [Bus86] already shows a 1-1 correspondence between closed geodesics completely

contained in S1 and S2. Consider γ, a closed geodesic in X1. Decompose γ into
N⋃
i=1

βi so that each

βi is a continuous geodesic segment in the original surface S1 with endpoints on the gluing curve.
We say a closed geodesic in γ1 ⊂ X1 is identical to γ if γ1 and γ begin at the same point x ∈ X1

on the gluing curve, and γ1 can be decomposed into
N⋃
i=1

β1
i , a union of translated copies of βi in S1

with endpoints on the gluing curve. There is a natural isometry φ between gluing geodesics in X1

and those in X2. We say γ′ ⊂ X2 is identical to γ ⊂ X1 if γ′ begins and ends at φ(x) ∈ X2 while γ

begins and ends at x ∈ X1, and γ2 can be decomposed into
N⋃
i=1

β′
i so that each β′

i is a transplanted

copy of βi (in the sense of [Bus86]) that begins and ends on the gluing curve in X2. We will argue
that the numbers of closed geodesics identical to γ in X1 and X2 are the same, which shows the
length spectra are the same.

We now construct closed geodesics identical to γ in X1 by concatenating admissible translated
copies of each βi, which we define precisely below:

Definition 3.3. We say that a choice of geodesic segment βi, where 2 ≤ i ≤ N , is admissible if it
is compatible with the previous choices of βj (j < i) in the following sense:

1. βi−1 ∪ βi does not backtrack : βi does not start on the same side of the building block that
βi−1 ends on (see (a) on Figure 4), and if i = N , βi does not end on the same side of the
building block β1 starts on;

2. βi−1 ∪ βi is continuous: βi begins at the same point on the gluing curve that βi−1 ends on
(see (b) on Figure 4), and, if i = N , βi ends at the same point on the gluing curve that β1
begins at.
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Figure 4: Two examples of (parts of) inadmissible βi’s. In (a), βi−1 ∪ βi is a backtracking geodesic
segment. In (b), βi−1 and βi begin at different points of the gluing curve, as the red and blue
segments are not identified, which means βi−1 ∪ βi is disconnected.

We first prove the following:

Claim. In X1, there is exactly one translate of β1
i := βi, β

2
i , which begins and ends at the same

point on the gluing curve βi begins and ends at.

Proof of claim: If βi begins on the top right (resp. top left, bottom right, or bottom left) side
of length a in Bi, initiate β2

i at the same point on the top right (resp. top left, bottom right, or

bottom left) side of length a in Bi+4. Let βj
i =

L⋃
k=0

γji,k be a decomposition of βj
i into geodesic

segments that are contained entirely in a single building block, where γji,k ⊂ B
nj
i,k

and j = 1, 2.

Let ϵk = n2
i,k − n1

i,k. Note in particular that ϵ0 = 4. We observe the following changes to ϵj in the
following scenarios:

• β1
i and β2

i cross sides of length c. In this case, nj
i,k+1 = nj

i,k ± 1 for both j = 1, 2 depending
on whether the left or right side of a building block is crossed. Note that when crossing
edges of length c, β1

i and β2
i either both cross left sides or both cross right sides. Then

ϵk+1 = (n2
i,k ± 1)− (n1

i,k ± 1) = n2
i,k − n1

i,k = ϵk.

• β1
i and β2

i cross sides of length a. In this case, for both j = 1, 2, nj
i,k+1 = nj

i,k or nj
i,k + 4,

depending on the parity of the building block. Provided that ϵk = 4 (mod 8), either ϵk+1 =
n2
i,k − n1

i,k = ϵk or ϵk+1 = (n2
i,k + 4)− (n1

i,k + 4) = ϵk.

• β1
i and β2

i cross sides of length b. In this case, for both j = 1, 2, nj
i,k+1 = nj

i,k ± 1 or

nj
i,k ± 3, depending on the label of the building block. But again, if ϵk = 4, then ϵk+1 =

(n2
i,k ± 1)− (n1

i,k ± 1) = n2
i,k − n1

i,k = ϵk or ϵk+1 = (n2
i,k ± 3)− (n1

i,k ± 3) = n2
i,k − n1

i,k = ϵk.

From this, we conclude that in fact, ϵL = 4. That is, if β1
i ends on an edge of the building block

BN , then β2
i ends on the same point in the corresponding edge of BN+4. Since there are only two

edges that are top right, top left, bottom right, or bottom left edges of building blocks which are
identified to create a subarc of the gluing geodesic, there cannot be another translate of β1

i sharing
beginning and end points with β1

i . Thus, there is exactly one such β2
i , as claimed.

We now compute C1(γ), the number of closed geodesics in X1 identical to γ. Fix a copy of β1,
say β1

1 ⊂ X1. By construction, β1
1 can be concatenated with any of the two copies of β2 in {βj

2}2j=1

to create a geodesic segment unless some βj
2 is chosen so that βj

2 ∪ β1
1 backtracks, in which case

there is only one admissible copy of β2 which can be concatenated with β1
1 . Using the same logic

for all 2 ≤ i ≤ N , we have the following general fact:

ci := #{βj
i which can be concatenated with some fixed copy of βi−1}
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=


1 if βi−1 ends on a top red edge from Figure 2 and βi begins on a top red edge,

or the statement is true if “red” is replaced with “blue” and/or “top” is replaced with “bottom”;

2 otherwise.

We now examine how to choose a copy of βN from {βj
N}2j=1. The set of admissible βN now

depends on our choice of βj
N−1 and β1

1 , and specifically on whether the following facts are true:

• Fact 1: βj
N−1 ends on a top red edge and βN begins on a top red edge (or the statement is

true if we replace “red” with “blue” and/or “top” with “bottom”);

• Fact 2: βN ends on a top red edge and β1 begins on a top red edge (or the statement is true
if we replace “red” with “blue” and/or “top” with “bottom”).

We now do some casework, depending on whether Facts 1 and 2 are satisfied.

Case One: Neither Fact 1 nor Fact 2 is true. In this case, any choice of pairs of translates of β1 and

βN is compatible. Thus, each choice of βj
1 (j = 1, 2) has

N∏
i=2

ci =

(
N−1∏
i=2

ci

)
(2) choices of sequences

of admissible translates of βi. Then C1(γ) = 2

(
N−1∏
i=2

ci

)
(2). See Figure 5.

Figure 5: An illustration of Case 1, with identical copies of closed geodesics created by concatenating
the pink (β1), green (β2), and orange (β3) geodesic segments. Two closed geodesics are illustrated
in each of X1 and X2, one solid and one dashed. The star icon indicates the start of each geodesic.
Here, N = 3 and c2 = 2, so C1(γ) = 2(2)(2) = C2(γ). We can check that there are indeed eight
identical, non-backtracking closed geodesics in each of X1 and X2.

Case Two: One of Fact 1 or Fact 2 is true. Suppose Fact 1 is true. Then any choice of βj
N is

compatible with a fixed choice of translate of β1, but there is only one admissible translate of βN
for each fixed translate of βN−1. Suppose Fact 2 is true. Again, given a fixed βj

1, there is only one

admissible translate of βN , as one of them is not compatible with βj
1. In either case, we slightly

modify the equation for C1(γ) from the previous case: C1(γ) = 2

(
N−1∏
i=2

ci

)
(1). See Figure 6.

Case Three: Both Fact 1 and Fact 2 are true. This case is the most nuanced, but surprisingly,
the count is the same as in Case 2. There are four possible pairs of geodesic segments βj

1 and
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Figure 6: An illustration for Case 2. Again, two closed geodesics are shown, one solid and one
dashed, and the star indicates the starting point of each geodesic. Here, N = 3 and c2 = 2,
so C1(γ) = 2(2) = C2(γ). We can check that there are four identical, non-backtracking closed
geodesics in each of X1 and X2.

βk
N−1 (j, k ∈ {1, 2}) which satisfy (2) of Definition 3.3. For exactly two of these pairs, there is

one inadmissible copy of βN : the translate of βN with starting point coinciding with the endpoint
of βk

N−1 and endpoint coinciding with the starting point of βj
1. For all other pairs, there are two

inadmissible (and thus no admissible) copies of βN : one translate with endpoint coinciding with
the starting point of βj

1 and one (other) translate with starting point coinciding with the endpoint

of βk
N−1. Thus, C1(γ) = 2

(
N−1∏
i=2

ci

)
(1) + 2

(
N−1∏
i=2

ci

)
(0) = 2

(
N−1∏
i=2

ci

)
. See Figure 7.

Figure 7: An illustration for Case 3. Again, N = 3 and c2 = 2, so C1(γ) = 2(2) = C2(γ). We can
check that there are indeed four identical, non-backtracking closed geodesics in each of X1 and X2.

We now construct an identical transplanted copy of each βj
i , β

′j
i =

L⋃
k=0

γ′ji,k, where γ
′j
i,k ⊂ B′

n′j
i,k

and β′j
i is initiated with the rule δji (0) := n′j

i,0 − nj
i,0 = 0 (see Equation (1)). We claim that βj

i

meets the gluing curve if and only if β′j
i intersects a gluing curve. By Lemma 2.3, if δji (k) = 0 or

4, crossing a side of length c or b does not change δji and crossing a side of length a changes δji
to δji + 4. Thus, δji (k) = 0 or 4 for all 0 ≤ k ≤ L; that is, nj

i,k and n′j
i,k differ by either 0 or 4

(see, for example, any of the previous 3 figures). Then βj
i meets a gluing curve if and only if β′j

i

10



does. This establishes a natural bijection between {βj
i }2j=1 and {β′j

i}2j=1, so one can make the same
computations as before for calculating C2(γ), which counts the number of identical copies of γ in
X2. We obtain in the end that C1(γ) = C2(γ). One can therefore bijectively map copies of γ in X1

to those in X2.

3.2 Non-homeomorphic, iso-length-spectral surface amalgams

We first remind the reader of a convenient way to determine whether two simple, thick surface
amalgams are homeomorphic, using a criterion established by Lafont in [Laf07].

Proposition 3.4 (Corollary 3.4 of [Laf07]). If f : X̃1 → X̃2 is a quasi-isometry, then f induces a
bijection between homeomorphic chambers of X1 and X2.

Recall that if two compact metric spaces are homeomorphic, then there is a quasi-isometry
between their universal covers by the Milnor-Schwarz Lemma. From Proposition 3.4, it then fol-
lows that the chambers of two homeomorphic simple, thick surface amalgams are necessarily in
bijective correspondence with each other. With this in mind, we now construct two isopectral,
non-homeomorphic hyperbolic surface amalgams.

Construction 3.5. Consider S1 and S2 from [Bus86] which have sets of systoles {γi}4i=1 and
{γ′i}4i=1. Construct X1 by identifying all the systoles γi ⊂ X1 according to the orientations specified
in Figure 9. Similarly, glue together all the γ′i ⊂ S2 to construct X2.

Proposition 3.6. The surface amalgams X1 and X2 from Construction 3.5 are iso-length-spectral
but not homeomorphic.

Proof. X1 and X2 are not homeomorphic. Cutting along the gluing curves yields one chamber
for X2 and two for X1, so by Proposition 3.4 it is impossible to establish a bijection between the
two collections of chambers (see Figure 8 and Figure 9).

Figure 8: X1 and X2 are homeomorphic to the surface amalgams on the left and right respectively.

X1 and X2 are iso-length-spectral. We follow a similar strategy as before, by showing that
the number of closed geodesics identical to a given closed geodesic γ ⊂ X1 is the same in X1 and
X2. Again, we focus our attention on closed geodesics that do not intersect the gluing curve. We

decompose γ into a union
N⋃
i=1

βi of geodesic segments that project to connected geodesic segments

in S1 beginning and ending on the gluing curve and count the number of ways to concatenate
admissible translates of each βi.

11



Figure 9: The two chambers of X1 are in orange and blue while X2 only has one chamber.

We will show that in X1, there are four translates of βi with the same beginning and end points
on the gluing curve. If βi begins on the right (resp. left) edge of a building block, we show there
is one copy starting on the right edge (resp. left) of each odd (resp. even) labeled building block.
In particular, we claim that each translated copy of βi will end on a building block with the same
parity as the one βi ends on (and thus share an endpoint with βi).

Let {βj
i }4j=1 be the set of geodesic segments in X1 which are translated copies of βi that either

all begin on the left sides of the even labeled building blocks or all begin on the right sides of the
odd labeled building blocks, depending on where βi begins. Suppose β1

i := βi. We check that βj
i ,

where j = 2, 3, or 4, ends on a building block whose label has the same parity as the one β1
i ends

on, allowing it to be concatenated with the next geodesic segment. Let βj
i =

L⋃
k=0

γji,k, where each

γjk is contained in a single building block, B
nj
k
. Define dji (k) := nj

i,k − n1
i,k. Note that dji (0) is even

since each βj
i must start on either an odd or even labeled building block. Crossing a side of length

c will not change dji (k). Furthermore, crossing a side of length b (resp. a) will change (resp. not

change) the parity of both nj
i,k and n1

i,k, so the parity of dji (k) remains the same for all 0 ≤ k ≤ L.

In particular, dji (L) is even, so the parity of nj
i,L will match that of nj

i,1.
We can now compute C1(γ) using the same strategy as before. Using the same argument from

Section 3.1 (replacing 1 and 2 with 3 and 4 respectively), we deduce that for each 2 ≤ i ≤ N − 1:

ci := #{βj
i which can be concatenated with some fixed copy of βi−1}

=

{
3 if βi−1 ends on a right (resp. left) edge, and βi begins on a right (resp. left) edge;

4 otherwise.

We then calculate cN depending on whether the following facts are true:

• Fact 1: βN−1 ends on a right edge and βN begins on a right edge (or the statement is true if
we replace “right” with “left”);

• Fact 2: βN ends on a right edge and β1 begins on a right edge (or the statement is true if we
replace “right” with “left”).

By the same proof as before but replacing 0, 1 and 2 with 2, 3, and 4 respectively, we have

C1(γ) = 4

(
N−1∏
i=2

ci

)
(4) for Case 1, C1(γ) = 4

(
N−1∏
i=2

ci

)
(3) for Case 2, and C1(γ) =

4

16
(4)

(
N−1∏
i=2

ci

)
(3)+

12
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16
(4)

(
N−1∏
i=2

ci

)
(2) =

(
N−1∏
i=2

ci

)
(3)+3

(
N−1∏
i=2

ci

)
(2) for Case 3. The fractions from Case 3 come from

the fact that there are now a total of 16 choices of pairs of geodesic segments βj
1 and βk

N−1 where
j, k ∈ {1, 2, 3, 4}. For exactly four of these pairs, there is exactly one inadmissible copy of βN which
begins on the same building block as the end of βk

N−1 and ends on the same building block as the

beginning of βj
1. For the 12 other pairs, there are two inadmissible copies of βN .

We now show C2(γ) = C1(γ). First, we claim there are four transplanted copies of βi that begin
on the right (resp. left) side of each odd (resp. even) labeled building block and end at the same
point. There is a natural isometry between gluing geodesics in X1 and those in X2; if a gluing
geodesic cn is the right edge of Bn and the left edge of Bn+1, let φ(cn) be the right edge of Bn+1 and

the left edge of Bn+2. If each βj
i begins at x ∈ X1, we construct a set {β′j

i}4j=1 =

{
L⋃

k=0

γ′ji,k

}4

j=1

of transplanted copies of βj
i which begin at φ(x) ∈ X2 and pass through building blocks B′

n′j
i,k

.

Initiate each β′j
i,k with the rule δji (0) := n′j

i,0−nj
i,0 = 1. By Lemma 2.3, if δji (k) = ±1, crossing sides

of length a or c does not affect δji (k) while crossing a side of length b sends ±1 to ∓1. Regardless

of the sequences of edges crossed, δ′ji (L) = 1 or −1 for all j. Thus, each β′j
i will end on the same

side of a gluing geodesic that each βj
i ends on. Each β′j

i will also end on a distinct building block.
Thus, as before, one can make the same computations for C2(γ) that counts the number of

identical copies of γ in X2. We obtain in the end that C1(γ) = C2(γ). As a result, one can
bijectively map copies of γ in X1 to copies of γ in X2.

Remark 3.7. We remark that X1 and X2 are commensurable. Indeed, they have a common double
cover. The chambers in X1, which are both tori with four boundary components, lift to their double
covers, which are tori with 8 boundary components, S1,8. In other words, the chambers in X1 each
lift to a copy of the chamber in X2. In summary, X1 and X2 both have double covers consisting of
two copies of S1,8 and two gluing curves obtained from identifying two quartets of lifts of boundary
components originally identified in X1 and X2.

4 Proof of Theorem 1.3

We now prove Theorem 1.3, our second main result following the construction below.

Construction 4.1. Consider, again, the surfaces from [Bus86]. We will glue three copies of each
surface together to create X1 and X2. For both X1 and X2, there will be one gluing curve which
will consist of unions of perpendiculars between edges of length b that bisect all the building blocks
except ones labeled 6 and 7.

Note that in each surface, three pairs of perpendiculars form geodesics: the ones in building
blocks with labels 1 and 4, 2 and 3, and 5 and 8. As a result, we need to specify how the geodesics
are glued together. We will identify the halves of geodesics on the odd numbered building blocks
and halves of geodesics on even numbered building blocks. See Figure 10 for the orientations of
the gluing curves.

X1 and X2 are weak length isospectral. We use Buser’s transplantation technique. As before,
it suffices to consider closed geodesics that are not closed geodesics in copies of S1 and S2. We

decompose γ ⊂ X1 into a union of geodesic segments
N⋃
j=1

γj each of which is contained entirely

within a building block Bnj . We must specify an algorithm to construct a transplanted copy of γ,
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γ′ ⊂ X2, which is a union
N⋃
k=1

γ′k of geodesic segments that are each completely contained within

a building block in S2, start and end on the gluing curve in X2, and do not backtrack. We will
label the copies of S1 in X1 with S1

1 , S
2
1 , and S3

1 and similarly label the copies of S2 in X2. In
the following algorithm, we will write δs(j) = n′s

j − ns
j , which gives instructions for transplanting

geodesic segments from Ss
1 to Ss

2.

Algorithm 4.2. Suppose γj−1 ∪ γj does not project to a connected geodesic segment in any copy

of S1. Moreover, suppose that following Algorithm 2.2, βj,j+L :=
L⋃
i=0

γj+i projects to a continuous

geodesic segment in some copy of S1, S
s
1, where 1 ≤ s ≤ 3. We then initiate γ′j using the following

rules (unless otherwise specified, γ′j will be initiated on Ss
2):

1. If γj lies in a building block indexed by an element in the set {1, 4, 5, 8}, we set δs(j) = 0 if
#b is even and 4 if #b is odd.

2. If γj+L lies in a building block indexed by an element in the set {1, 4, 5, 8}, we set δs(j) = 0.

3. Otherwise, set δs(j) = 2.

4. If any of the previous rules cause backtracking, copy γ′j over to another copy of B′
nj

(e.g.

B′t
nj

⊂ St
2 where s ̸= t).

Remark 4.3. Three surfaces are needed in order to ensure (4) from Algorithm 4.2 can always
be applied in order to prevent backtracking. In fact, only two surfaces are needed to correct for
backtracking when constructing γ′j , where j < N , but for j = N , one needs to ensure that γ′N is
admissible with respect to both γ′1 and γ′N−1.

We now show that following (1), (2) and (3) from Algorithm 4.2, for each βj,j+L ⊂ Ss
1, we can

obtain a geodesic segment β′
j,j+L ∈ Ss

2 which begins and ends on the gluing curve. If γj ⊂ Bnj

for some nj ∈ {1, 4, 5, 8}, then we set δs(j) = 0 if #b is even and δs(j) = 4 if #b is odd so that
regardless, γ′j ⊂ B′

n′
j
, where n′

j = k + 4 ∈ {1, 4, 5, 8}. By Lemma 2.3, if δs = 0 or 4, crossing a side

of length a or c leaves δs invariant, while crossing a side of length b replaces δs by δ + 4. Thus,
δs(j + L) = 0, so Bs

n′
(j+L)

intersects a gluing curve since Bs
n(j+L)

does. Suppose γj+L ⊂ Bk where

k ∈ {1, 4, 5, 8}. Then setting δs(j) = 0 ensures that γ′j begins on a building block intersecting a
gluing curve and that δs(j+L) is 0 or 4. Thus, γ′j+L lies in a building block indexed by an element
of the set {1, 4, 5, 8}, which necessarily intersects the gluing curve.

This leaves the case (γj ⊂ Bnj , where nj ∈ {2, 3}) and (γj+L ⊂ Bnj+L , where nj+L ∈ {2, 3}).
We set δs(j) = 2. Since nj ∈ {2, 3}, n′

j ∈ {1, 4, 5, 8} and the building blocks indexed by this set
all intersect the gluing curve. By Lemma 2.3, δ = ±2, crossing a side of length a or b replaces
δ by δ + 4, while as before, crossing a side of length c does not change δ. Thus, if #a + #b is
even (resp. odd), then δs(j + L) = 2 (resp. −2). Either way, since ns

j+L ∈ {2, 3}, we have that
n′s

j+L ∈ {1, 4, 5, 8}, and the building blocks indexed by this set all intersect the gluing curve.
We need to check an additional condition to ensure γ′j ∪ γ′j−1 is connected in X2. It suffices to

show if γ′j−1 ends in an odd (resp. even) numbered building block, γ′j also begins in an odd (resp.
even) numbered building block. We know the previous sentence to be true if γ′ is replaced with
γ. In all cases, δs(k) is even for any j ≤ k ≤ j + L. As a consequence, the parities of the building
blocks containing γsj and γ′sj are the same. This is enough to prove what we want.

Remark 4.4. Unfortunately, Algorithm 4.2 does not yield a 1-1 correspondence between identical
geodesic segments in X1 and X2, even if we restrict to single subsets of X1 and X2 consisting of a
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Figure 10: Weak length isospectral but noncommensurable X1 and X2 with the chambers shown
in different colors. The gluing curves in X1 are shown in red, while the ones in X2 are dark blue.
The pink and green geodesics in X1 both map to the purple geodesic in X2, so Algorithm 4.2 does
not give a 1-1 correspondence between transplanted closed geodesics.

single copy of S1 or S2 with geodesics identified. Figure 10 illustrates this. Following Algorithm 4.2,
both the pink and green curve in X1 are assigned to the purple curve in X2. Thus, one cannot
show iso-length-spectrality using transplantation via Algorithm 4.2. In the picture, we also show
all the identical closed geodesics that begin at the same point (indicated by black dots) in X1 and
X2 respectively. Note that there are three closed geodesics in X1 and only two in X2, as initiating
a geodesic from B′

2 does not result in a closed geodesic in X2.

One may ask whether we can come up with initiation rules so that there is indeed a 1-1 cor-
respondence between identical closed geodesics. Unfortunately, the answer is no. We show this by
counting identical copies of a particular closed geodesic in X1 and X2.

We revisit the closed geodesics in Figure 10. In X1, notice that on each surface Ss
1, there are

three identical closed geodesics (depicted in green, pink, and gray) that begin and end at the same
point x ∈ X1, which is depicted as a black dot. In contrast, on each surface Ss

2 in X2, there are
only two closed geodesics beginning and ending at the corresponding point x ∈ X2. In S2

1 ⊂ X1,
there are also two geodesics beginning and ending in the odd indexed building blocks, on the half
of the gluing x is not on. In Ss

2 ⊂ X2, there are also two such closed geodesics; see Figure 11.
Thus, in total, since there are 3 copies of each surface, there are 5(3) = 15 copies of identical closed
geodesics in X1 but only 4(3) = 12 copies of the same closed geodesics in X2. This shows it is not
possible to achieve a 1-1 correspondence between identical closed geodesics in X1 and X2; thus,
one cannot prove iso-length-spectrality via transplantation. We remark that this does not rule out
iso-length-spectrality of X1 and X2, which is improbable but still possible.
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Figure 11: Copies of closed geodesics identical to the ones shown in Figure 10 which begin and end
in the odd-labeled building blocks.

Figure 12: X1 and X2, which are constructed by gluing together the red and blue sets of boundary
components, are not commensurable. Their six-sheeted covers referenced in the proof of Theo-
rem 1.3 are also shown.

X1 and X2 are not commensurable. We now show that X1 and X2 do not have a common
finite-sheeted cover. Note that X1 has six tori with two boundary components, which we denote
by S1,2, and three genus two surfaces with two boundary components S2,2; again, all the boundary
components are identified. On the other hand, X2 consists of three tori with one boundary compo-
nent S1,1, three tori with two boundary components S1,2, and three genus two surfaces with three
boundary components S2,3, and all the boundary components are identified together.

Consider a six-sheeted cover of X1, X̂1, which consists of six copies of a genus four surface with
six boundary components (three-sheeted covers of S2,2) and 12 copies of a torus with six boundary

components (three-sheeted covers of S1,2). Consider also six-sheeted cover of X2, X̂2, which consists
of nine copies of genus three surfaces with six boundary components (double covers of S2,3) and
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nine copies of a torus with six boundary components (six three-sheeted covers of S1,2 and three

six-sheeted covers of S1,1) (see Figure 12). For both X̂1 and X̂2, there are six gluing curves, and
exactly one boundary component in each chamber is glued to each gluing curve. Note that the Euler
characteristics of the chambers in X̂1, in ascending order, are {−12, ...,−12︸ ︷︷ ︸

×6

,−6, ...,−6︸ ︷︷ ︸
×12

} while those

in X̂2 are {−10, ...,−10︸ ︷︷ ︸
×9

,−6, ...,−6︸ ︷︷ ︸
×9

}. Let {Si} and {Ti} denote the collections of chambers of X̂1 and

X̂2 respectively, labeled so that χ(S1) ≤ χ(S2) ≤ ... ≤ χ(S18) and χ(T1) ≤ χ(T2) ≤ ... ≤ χ(T18). A

generalization of Proposition 3.3.2 of [Sta17], proved in Section 5.2 of [DST18], implies that π1(X̂1)

and π1(X̂2) are abstractly commensurable (e.g. they do not have isomorphic finite-index subgroups)

if and only if all the
χ(Si)

χ(Ti)
are equal. Note, however, that

χ(S1)

χ(T1)
=

−12

−10
̸= −6

−6
=

χ(S18)

χ(T18)
. It then

follows that π1(X̂1) and π1(X̂2) are not abstractly commensurable.
Since abstract commensurability is an equivalence relation, π1(X1) and π1(X2) also cannot be

abstractly commensurable since π1(Xi) is abstractly commensurable to π1(X̂i) for i = 1, 2. By the
Galois correspondence of covering spaces for CW complexes, it then follows that X1 and X2 also
cannot be commensurable, as claimed.
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