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Abstract. Agol proves the eventual periodicity of a maximal splitting sequence of a train train obtained from
the stable lamination of a pseudo-Anosov homeomorphism. We generalize this result to orbifolds obtained
from taking quotients of k-holed spheres by isometries in Rn.

1 Introduction

Farb, Leininger, and Margalit prove the existence of a finite collection of fibered hyperbolic 3-manifolds such
that every small-dilatation pseudo-Anosov is a monodromy of a mapping torus that can be obtained by
a Dehn filling on a member of the finite collection [1]. In [2], Ian Agol reproved the theorem using ideal
triangulations of mapping tori of pseudo-Anosov maps and maximal splitting sequences of train tracks. The
Agol maximal splitting sequence does not allow isolated monogons. As a result, train tracks described in
Agol’s paper are rather different from, and in fact may prove more complex than, the splitting sequences
described by Kin and Hironaka [3]. By examining train tracks with isolated monogons, this expository piece
is a step towards reconciling differences between Agol’s splitting sequence and the Hironaka-Kin sequence.
We also explore Agol’s theorem with simple orbifolds.
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2 Definitions

2.1 Orbifolds

We define orbifolds in a way that suffices for the purposes of this discussion. Note this definition does not
work for “bad” orbifolds such as the teardrop orbifold, which do not have manifold covers. Let Γ be a
discrete isometry in Rn and S ⊆ Rn a submanifold invariant under Γ. Then S/Γ is an orbifold. If Γ has no
fixed points, then S/Γ is a manifold.

We provide some simple examples. Suppose Λ = 〈(x, y) 7→ (x + 1, y), (x, y) 7→ (x, y + 1)〉 ∼= Z2, which
gives a tessellation of R2, effectively tiling it. There are no fixed points as Λ describes translations. Note that
R2/Λ ∼= T 2, since Λ describes the gluing map of a torus, a manifold. Now let Γ describe a tessellation on R2

with fixed points, for example rotations by π. Then Γ is cyclic of order 2, so Γ ∼= Z/2Z. Consider (R2/Λ)
/

Γ,
or the quotient of the torus by the hyperelliptic involution. The resulting orbifold is a pillowcase (see figure 1).
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Figure 1: An example of a orbifold obtained by taking the quotient of the torus.

The orbifolds we deal with in this paper can be visualized as spheres with a finite number of cone points,
each labeled with with an integer n specifying the order of Γ. In the aforementioned case, all four cone
points are labeled with 2, specifying the group action under question is Z/2Z.

2.2 Branched Covers

Recall that a space X̃, along with a map p from X̃ to the base space X, is a covering space of X if every
point in X has an open neighborhood U whose preimage is a disjoint union of open sets in X̃. Furthermore,
each member of this disjoint union maps homeomorphically onto U . If X is evenly covered, a sheet is one
homeomorphic copy of the open sets in p−1(U). If there are two sheets mapping homeomorphically to U ,
then we say X̃ is a double cover of X. Suppose that with the exception of a finite number of branch points
in X̃ that do not map homeomorphically onto any neighborhood in X, X̃ is a cover of X. Then X̃ is a
branched cover of X.

For example, consider the wedge sum of two circles. S1 ∨ S1 is a branched double cover of S1 since no
neighborhood of the intersection point s of the two circles maps homeomorphically to any open set in S1. The
branch point of the cover is s. To give another example, a torus is a doubled branched cover of (R2/Λ)

/
Γ.

The branch points, P = {p1, p2, p3, p4}, are fixed under hyperelliptic involution, which is consistent with our
description of (R2/Λ)

/
Γ as an orbifold. In particular, P ∪ S0,4 = (R2/Λ)

/
Γ, so we could also say the torus

is a branched double cover of S0,4.

2.3 Train Tracks and Operations

Suppose Σ = S/Γ is a surface with no boundary equipped with a hyperbolic metric (a complete metric with
constant negative curvature). A (geodesic) lamination L of Σ is a set of disjoint, non-self-intersecting, locally
length-minimizing arcs, called geodesics, whose union forms a closed subset of Σ. The geodesics are referred
to as the leaves of L. When lifted to the universal cover, the complementary regions of L consist of ideal
polygons.

Recall the Nielsen-Thurston Classification Theorem of surface homeomorphisms. Given a homeomor-
phism on an orientable surface ϕ : Σ → Σ, up to homotopy, ϕ is periodic, finite-order, or pseudo-Anosov.
We focus on pseudo-Anosov homeomorphisms. Informally, a pseudo-Anosov homeomorphism stretches every
curve on a surface exponentially. More precisely, a map ϕ is pseudo-Anosov if there exists a transverse pair
of stable and unstable laminations on Σ, denoted Ls and Lu respectively, such that ϕ scales Ls by some real
number λϕ > 1 and Lu by λϕ

−1. We call λϕ the stretch factor of ϕ. Laminations are often complicated to vi-
sualize. As a result, Thurston devised a combinatorial technique, a train track, for representing a lamination.

Let Σ be an orientable surface. A train track τ ⊂ Σ is a one-complex embedded in Σ satisfying some
extra conditions:
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Figure 2: The switch condition requires the sum of the weights of the two sides of the switch to be equal.
As a consequence, for the train track above, we have that a+ c = b+ d.

1. Each vertex, called a switch, of τ has a well-defined tangent line.

2. Each of the edges, or branches, is weighted by a positive measure, and the switch condition (figure 2)
is satisfied.

One can approximate the lamination L associated with a pseudo-Anosov map ϕ : Σ → Σ using train
tracks by finding a differentiable map f : Σ→ Σ,L 7→ τ homotopic to the identity. If τ approximates L, we
say that L is suited to τ via the carrying map f .

All train tracks considered in this paper are trivalent, meaning each switch has three branches adjacent
to it. Each branch can be divided into two half-branches, one for each end of the branch. If a half branch is
on the same side of a switch as another half branch, then we call it small. Otherwise, a half branch is a large
half-branch. If the two ends of a branch are large half-branches, then we call it a large branch. On the other
hand, if the two ends of a branch are both small, we call it a small branch, and a mixed branch is comprised
of one small and one large half branch.

There are three operations one can perform on train tracks: splitting, folding (see figure 3), and shifting
(see figure 4). Notice that splitting only occurs on large branches, folding on small branches, and shifting on
mixed branches. Recall that two embeddings connected by a continuous path of embeddings are isotopic.
Since train tracks are embedded into a surface, one can talk about isotopic train tracks. We say that two
train tracks are equivalent if, up to isotopy, they differ by a sequence of splits, folds, and shifts.

Figure 3: Splitting a large branch of a train track. Its inverse operation, a fold, occurs on a small branch.

Figure 4: Shifting a mixed branch of a train track.

3



3 Orbifold Train Tracks and Operations

We can also define train tracks on orbifolds. Notice that in the branched double cover of (R2/Λ)
/

Γ, the
torus, the singular points P lift to bigons, each with point fixed under Γ in the middle. In theory, we could
lift τ to the branched double cover, which is a manifold and thus has well-defined operations (ie splitting,
folding, and shifting), and determine the corresponding operations on the orbifold by projecting back down
(see figure 5). As illustrated in the figure, the lift of an isolated monogon is a isolated bigon. If we apply
a split to the large branches adjacent to the bigon and then apply a shift by collapsing neighboring cusps,
we obtain an isolated bigon sandwiched between two pairs of mixed branches. We can project this isolated
bigon back downstairs to visualize the result of the action of a split-shift operation on the orbifold.

Figure 5: We can perform train track operations on the manifold double cover of an orbifold to determine
operations downstairs on the orbifold itself.

However, in practice, this is complicated by the fact that although S0,4 has a canonical branched double
cover, the torus, if we increase the number of holes, there is no such canonical cover. We work with S0,5 to
address this issue. If we consider a train track on τ ⊂ S0,5 where τ has an isolated monogon around each of
the punctures, τ ⊂ (R2/Λ)

/
Γ has no monogons since (R2/Λ)

/
Γ has no punctures. Instead, the monogons

become the branch points (see figure 6).

Figure 6: A monogon tree train track on an orbifold with 5 cone points can be compared to one on S0,5.

Evidently, operations of train tracks with monogons are easier to visualize than ones on train tracks with
orbifold points. One could easily take a train track on an orbifold, omit its n orbifold points to obtain the
n-holed sphere, and visualize the same train track on S0,n. In this way, we can determine the split and fold
operations of orbifold train tracks (ie, see 7). This process can be further simplified by defining orbifold
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train tracks in a way that allows for monogons around orbifold points. This definition could, in a way, be
justified by how the fundamental group of an orbifold is defined.

Figure 7: In order to define a split-shift sequence, one can visualize the orbifold train track by replacing the
cone points with monogons and performing the desired operations on S0,n.

We provide an intuitive sketch behind the definition of the fundamental group of orbifolds, based on Dan
Peterson’s view from [4]. Take a cone point p of order n. The point is that p is an intermediate between a
point and a puncture. It is not exactly a point since the union of p with n copies of itself constitutes a point.
At the same time, one cannot call p a puncture, obtained by omitting a point from a surface; however, the
higher the order of p, the more analogous it is to a puncture. As a result, if one draws a loop γ around p,
one cannot collapse γ down to p since p is not a proper point. However, consider the loop γn, obtained by
traveling n times around γ, and thus n times around p. Then γn is contractible and homotopy equivalent
to the trivial loop. From this perspective, one can consider γ to be a nontrivial element of π1(S/Γ), where
S/Γ is an orbifold. As a result, a train track on S/Γ will contain monogons, at least in the case we are
considering, around each cone point.

4 Periodic maximal splitting sequences of orbifold train tracks

4.1 Notation

The notation of this paper is, for the most part, consistent with Agol’s. We denote a split of a measured

train track by (τ, µ) ≺ (τ ′, µ′). If a split occurs along a specified large branch e ⊂ τ , we write (τ, µ)
e
≺ (τ ′, µ′).

We define a maximal splitting as a split along the branch of maximal weight. If there are multiple branches

of maximal weight, all of them are split simultaneously. (τ, µ)
n
≺ (τ ′, µ′) denotes a sequence of n maximal

splits. If the number of maximal splits is unspecified, then I write (τ, µ)
max
≺ (τ ′, µ′).
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4.2 Penner-Harer’s Theorems

We provide two fundamental statements that are crucial to our final results, taken from Theorem 2.8.5 of
[5]. The following facts are true in the manifold case; we want to show the results carry over to the case of
well-behaved orbifolds.

Theorem 4.1. If a lamination L is suited to two measured train tracks (τ, µ) and (τ ′, µ′), then (τ, µ) ∼
(τ ′, µ′).

Theorem 4.2. If L is suited to (τ, µ) and (τ, µ) ∼ (τ ′, µ′), then L is suited to (τ ′, µ′) as well.

Although a rigorous proof of these two theorems is beyond the scope of this paper, we provide a sketch
of one proof, which utilizes Fenchel-Nielsen coordinates. Other potential directions in proving the theorem
involve standard train tracks on surfaces (see [5]) and the more combinatorial approach of ideal triangula-
tions introduced by Marc Lackenby [6].

4.2.1 Fenchel-Nielsen Coordinates

We now define Fenchel-Nielsen coordinates, sweeping a few details under the rug and taking many facts for
granted. Most of this information is based on Feng Zhu’s notes on hyperbolic geometry [7].

The Teichmuller space of a hyperbolic surface Σ = Σg,0, denoted T (Σ), is a collection of equivalence
classes of marked hyperbolic metrics. By the Uniformization Theorem, there is a bijection between hyper-
bolic metrics and Riemann surface structures, so T (Σ) can also be represented by a collection of marked
Riemann surfaces. More specifically, given a hyperbolic surface S, points in T (Σ) are of the form [(S, h)],
where h : Σ→ S is an orientation-preserving homeomorphism, and (S, h1) ∼ (S, h2) if h1 and h2 are isotopic.
A commonly used analogy views Σ as an undressed body, S as the “clothing” for the body (which is fitting
since we will discuss pants decompositions later), and h as a series of instructions for how to wear the clothes.
For instance, one could obtain (S, h2) from (S, h1) by flipping a collar or smoothing a wrinkle, in which case
(S, h1) ∼ (S, h2).

There are several ways to coordinatize T (Σ). One classical method is through Fenchel-Nielsen coordi-
nates, which identify points in T (Σ) with points in R3g−3

+ × R3g−3, a space with a more familiar topology.
We provide a sketch of the identification, again omitting proofs of many statements, below.

Theorem 4.3 (Fenchel-Nielsen). T (Σ) is homeomorphic to R3g−3
+ × R3g−3.

Recall that a simple closed curve is a non-self-intersecting closed curve. A pants decomposition is a
partition of a hyperbolic surface into three-holed spheres (Σ0,3), but it can also be thought of as a maximal
collection of disjoint, non-parallel and homotopically non-trivial simple closed curves (see figure 8). Recall
that on any closed surface, every non-trivial curve is homotopic to a closed geodesic. If we require the
surface to be hyperbolic, the closed geodesic becomes unique. As a result, every hyperbolic surface Σg,0 can
be divided by 3g − 3 simple closed curves into 2g − 2 pairs of pants. Furthermore, we can equip every pair
of pants with a hyperbolic metric such that every boundary component is a closed geodesic.

Recall if we lift two disjoint closed geodesics to the hyperbolic plane, and they do not meet at ∂H2,
there is always a unique perpendicular between them. As a result, we can cut along the“seams” of a pair
of pants, which are the unique perpendicular arcs between the boundary components. We then obtain two
right-angled hexagons uniquely determined by measuring every other side length (see figure 9).

We can specify these three side lengths arbitrarily and reglue the surface back together, and then specify
the hyperbolic metric on each pair of pants so that adjacent “cuff lengths” agree. The collection of pairs of
pants, along with their hyperbolic metrics, determines a unique hyperbolic metric that, when restricted to
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Figure 8: The pants decomposition of Σ2,0. Note that the red pants curves form a maximal set of non-parallel,
nontrivial simple closed curves on the surface.

Figure 9: If we cut along the “seams” of each pair of pants (the dotted black lines), we obtain two right-
angled hexagons that are uniquely determined by specifying every other side length. In particular, we can
specify the lengths of the red pants curves.

each pair of pants, agrees with the locally assigned metric. Furthermore, in order to represent every hyper-
bolic metric, one can specify an additional “twist” coordinate on every boundary component, which gives
instructions on how to glue adjacent pants together so that the “seams” are offset. The twist coordinate,
unlike the length coordinate, can be negative. Altogether, the length and twist coordinates equip each pants
decomposition with (3g − 3) ∗ 2 = 6g − 6 choices of values. We have then identified hyperbolic metrics with
points in R3g−3

+ × R3g−3.

4.2.2 Using Fenchel-Nielsen coordinates to prove Penner-Harer’s theorems

The upshot of this discussion is that a choice of ε, along with a hyperbolic metric, determines the train track
suited to a lamination. We can construct a train track from a geodesic lamination L by choosing an ε and
identifying all leaves of L that are distance ε apart with respect to the fixed hyperbolic metric (see figure
10).

Dually, if one fixes a sufficiently small ε and changes the metric, one would also obtain train tracks that
differ by splits and folds (see figure 11).

Thus, given an appropriately small ε, the hyperbolic metric determines a train track that a lamination
is suited to. We can therefore identify each element of an equivalence class of train tracks with a hyperbolic
metric, which corresponds to a point in T (S). Fenchel-Nielsen coordinates then allow us to interpolate
between two different metrics- and two equivalent train tracks- by changing cuff lengths or twist coordinates.
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Figure 10: Different choices of ε-neighborhoods will yield different train tracks. In this case, if the hyperbolic
metric is fixed and we vary ε, choosing the red ε-neighborhood yields a folded version of the train track
obtained by choosing the blue ε-neighborhood.

Figure 11: A choice of metric affects how the half-leaves adjacent to an ideal vertex (shown in black) are
identified in the universal cover. Assume ε is fixed. Clearly, the red metric identifies more of the two
half-leaves than the blue metric, yielding a folded version of the train track obtained from the blue metric.

We now return to our original statements. Consider a lamination L, which is suited to (τ1, µ1) and
(τ2, µ2) by the carrying maps f1 and f2. We can describe f1 and f2 by fixing a small enough ε and choosing
two appropriate hyperbolic metrics. Each metric is identified with a train track that differs from the other
by splits or folds. As a result, (τ1, µ1) ∼ (τ2, µ2).

Conversely, suppose L is suited to (τ1, µ1), and (τ1, µ1) ∼ (τ2, µ2). We can fix a sufficiently small ε and
identify (τ1, µ1) with a metric. Since (τ1, µ1) and (τ2, µ2) differ by a series of splits and folds, we can associate
each intermediate train track with a hyperbolic metric to create a continuous path of metrics. As a result,
we can represent (τ2, µ2) by a hyperbolic metric, which is associated with a carrying map. Then L is suited
to (τ2, µ2), as desired.

4.3 Proof of the main theorem

We are now ready to generalize the main theorem from [2] to our case of orbifold train tracks.

Theorem 4.4. Suppose ϕ : Σ0,n/Γ → Σ0,n/Γ is pseudo-Anosov with stable lamination Ls. Suppose (τ, µ)
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is suited to Ls. Then ∃ some n,m st

(τ, µ)
n
≺ (τn, µn)

m
≺ (τn+m, µn+m) =

(
ϕ(τn), ϕ∗(µn)

)
Before we prove this theorem, there are some lemmas to prove. The first lemma ensures that any large

branch of a train track will eventually be split in an infinite maximal splitting sequence.

A lamination L is minimal if its half-leaves form a dense set; in other words, the closure of each half-leaf
is the entire lamination.

A trainpath is a differentiable immersion ρ : [m,n]→ τ ⊂ S/Γ that maps intervals [k, k+1], k ∈ [m,n−1],
onto branches of τ . We call n−m the length of ρ. Following this terminology, we first show that given any
branch e of τ , e must eventually be split in a maximal splitting sequence.

Lemma 4.5. Let L be a minimal lamination suited to (τ, µ). Suppose (τ1, µ1) ≺ (τ2, µ2) ≺ ... ≺ (τn, µn) ≺ ...
is an infinite sequence of maximal splittings. Then for any branch e ⊂ τ , there exists some n st (τn, µn) ≺
(τn+1, µn+1) splits e. In other words, µn(e) is a branch of maximal weight in τn.

Proof. Since L is suited to (τ, µ), by definition, we know that for some differentiable f : S0,n/Γ → S0,n/Γ,

f(L) = τ . Take a half-leaf, l ⊂ L. Because L is minimal, e ⊂ τ = f(l) ⊆ f(l). Then it must follow that
f(l) must cross e since l is an infinite ray. At each cusp, c, the two half leaves, denoted l1, l2, that lift to
boundaries of an ideal polygon corresponding to a complementary region of L on the universal cover, remain
asymptotic to but disjoint from each other along the branch adjacent to c (see figure 12). Note that l1 and
l2 cannot join to become an isolated monogon around an orbifold point; in that case, they would not be
disjoint. Then f(l1) and f(l2) will also be asymptotic to each other along this branch. For i = 1, 2, consider
the trainpath ρc,i : [mi, ni]→ τ that follows f(li). We also require that ρc,i(mi) = c and ρc([ni− 1, ni]) = e.
Since every half-leaf is dense, its image crosses e eventually, so we can assume such trainpaths exist.

Figure 12: l1 and l2 are half-leaves both emanating from the cusp c. Along the edge adjacent to c, they are
asymptotic in the sense that their lifts to the universal cover only ”intersect” past points at infinity.

Apply a split on the branch adjacent to c and notice that ρc,2 shrinks in length from n2 − m2 to
n2− (m2 +k), where k denotes the number of times ρc,2 crosses the split branch, while ρc,1 remains the same
in length, or vice versa, depending on the weights (see figure 13). As a result, the sum of the lengths of ρc,i
for i = 1, 2 decreases by at least 1 when the branch adjacent to c, denoted b, splits. Repeat the argument
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Figure 13: In this diagram, ρc,2 shrinks in length from 8 to 6 while ρc,1 stays the same length.

with the other cusp c′ adjacent to b and note that the sum of the lengths of ρc′,i for i = 1, 2 also decreases by
at least 1 when b is split. Consider the sum of all such trainpaths for every cusp of the train track and notice
that during every split along the maximal splitting sequence, the sum of all cusp paths decreases by at least 2.
By induction, this sum eventually becomes either 1 or 0, in which case e must have been split in the sequence.

In Figure 14, we illustrate the argument in the previous paragraph for orbifolds. In this example, the large
branch in question undergoes the orbifold split-shift sequence, defined in Section 3, reserved for branches
adjacent to isolated monogons surrounding orbifold points.

Figure 14: We see that after a split-shift combination we used to define splits of large branches adjacent to
isolated monogons around orbifold points, ρc,2 also shrinks in size by at least 1 in the orbifold case.

The only discrepancy is that, as mentioned before, there are no pairs of disjoint, asymptotic leaves em-
anating from c′, the cusp adjacent to c, so one need not consider cusp paths originating from c′. Figure
15 illustrates some issues that arise when one considers cusp paths from c′. In short, after the split-shift
sequence, the new trainpath is no longer differentiable.

Figure 15: If we do indeed consider the cusp path from c′, we would obtain an illegal trainpath after the
split-shift sequence.
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Two train tracks (τ, µ) and (τ
′
, µ

′
) have a common splitting (τ

′′
, µ

′′
) if one can obtain (τ

′′
, µ

′′
) through

some sequence of splits on (τ, µ) and (τ
′
, µ

′
). The following lemmas show that having a maximal common

splitting is an equivalence relation, and that two equivalent train tracks always share a common maximal
splitting.

Lemma 4.6. Having a common maximal splitting is an equivalence relation.

Proof. Reflexivity and symmetry are clear. The only nontrivial condition is transitivity. The proof of this
lemma relies on the fact that the common maximal splitting sequence is canonical; in other words, there

is only one way to split a train track maximally. Suppose that (τ1, µ1)
m
≺ (τ ′, µ′), (τ2, µ2)

m
≺ (τ ′, µ′), and

(τ2, µ2)
n
≺ (τ ′′, µ′′), (τ3, µ3)

n
≺ (τ ′′, µ′′). Consider N = max(m,n). Notice that either (τ ′, µ′)

N−m
≺ (τ ′′, µ′′)

or (τ ′′, µ′′)
N−n
≺ (τ ′, µ′). In the first case, (τ1, µ1)

n
≺ (τ ′′, µ′′), so (τ ′′, µ′′) is the common maximal splitting of

(τ1, µ1) and (τ3, µ3). In the second case, (τ3, µ3)
m
≺ (τ ′, µ′), so (τ ′, µ′) is the common maximal splitting of

(τ1, µ1) and (τ3, µ3).

Lemma 4.7. Let e be a large branch of nonmaximal weight. Then the two splittings (τ, µ)
e
≺ (τ ′, µ′) and

(τ, µ)
1
≺ (τ ′′, µ′′) commute. In other words, the following diagram commutes.

(τ ′′, µ′′) (τ ′′′, µ′′′)

(τ, µ) (τ ′, µ′)

split e

max split

split e

max split

Note that for any large branch e, a split cannot occur at at the branches incident to e, denoted a, b, c, d
since such branches will not be large. Moreover, if one splits along a branch incident to a, b, c or d,
µ(a), µ(b), µ(c), and µ(d) will remain unchanged (see figures 16 and 17). One can easily imagine that if
a split occurs even further away from e, or at branches not incident to a, b, c, or d, then µ(a), µ(b), µ(c), µ(d)

will also remain unchanged. As a result, applying (τ, µ)
1
≺ (τ ′′, µ′′), regardless of where e is located relative

to branches of maximal weight, will not affect how e is split.

Figure 16: Splitting along branches incident to a, b, c, d do not affect µ(a), µ(b), µ(c), µ(d).

Proof. We now show that splitting along e will not affect a maximal split. Refer to figure 18 to note that
splitting along e to create e′ will create at most two large branches, which we call b and c. However neither
of which will be a branch of maximal weight µ(b), µ(c) < µ(e) < µ(m), where m is a branch of maximal

weight. As a result, (τ, µ)
e
≺ (τ ′, µ′) will not affect a maximal split, as no new branches of maximal weight

are produced. We conclude that splitting along a branch of nonmaximal weight, e will occur independently
of a maximal splitting, so the splittings commute.
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Figure 17: Even if one of the branches adjacent to e, ie, a, is adjacent to a large branch next to an isolated
monogon around an orbifold point, µ(a) is unaffected.

Figure 18: Splitting along e will not produce any branches of maximal weight.

Lemma 4.8. We continue the notation from Lemma 4.7. Given a lamination L suited to (τ, µ), (τ ′, µ′),

there exists a maximal common splitting (τ ′′, µ′′) where (τ, µ)
max
≺ (τ ′′, µ′′) and (τ ′, µ′)

max
≺ (τ ′′, µ′′).

Proof. By theorem 4.1, if L is suited to (τ, µ) and (τ ′, µ′), then (τ, µ) ∼ (τ ′, µ′). In other words, (τ, µ) and
(τ ′, µ′) differ by a series of splits, folds, and shifts. Recall from Lemma 4.6 that having a maximal common
split is transitive. Thus, it suffices to consider the case in which one obtains (τ ′, µ′) from one split, fold,

or shift of (τ, µ). We claim that this reduces to showing that given (τ, µ)
e
≺ (τ ′, µ′), where e is some large

branch of τ , ∃ (τ ′′, µ′′) where (τ, µ)
max
≺ (τ ′′, µ′′) and (τ ′, µ′)

max
≺ (τ ′′, µ′′). To see this, notice the cases

of (τ, µ)
fold−−−→ (τ ′, µ′) and (τ, µ) ≺ (τ ′, µ′) are the same, since in both cases, (τ, µ) and (τ ′, µ′) differ by a

split; therefore, it would be enough to show two train tracks that differ by a split have a common maximal

splitting. Consider the case where (τ, µ)
shift−−−→ (τ ′, µ′). Refer to Figure 19 to deduce that (τ, µ) and (τ ′, µ′)

share a common splitting, denote (τ ′′′, µ′′′), obtained from splitting two branches of (τ, µ). Again, since the
property of having a common maximal splitting is transitive, it would suffice to show that (τ, µ), (τ ′′′, µ′′′)
and (τ ′, µ′), (τ ′′′, µ′′′) share a common maximal splitting, which would follow by transitivity if we show train
tracks that differ by one split have a common maximal splitting.

We point out that figure 19 only considers branches that are, in a sense, “far away” from isolated mono-
gons around orbifold points. More precisely, b cannot be adjacent to an isolated monogon. Notice that if we
attempt to shift such a b, and then split e, b will not become a large branch. As a result, b cannot be split
in order to yield a common maximal splitting (see figure 20).

Suppose (τ, µ)
e
≺ (τ ′, µ′). There are three cases: e can be the sole branch of maximal weight, one of

multiple branches of maximal weight, or neither. The first case is easy; (τ ′, µ′) is the common maximal

splitting since (τ, µ)
e
≺ (τ ′, µ′) is a maximal splitting sequence. Consider the second case. Let M be the set

of branches of maximal weight µ(e); note that e ∈M . Then (τ, µ)
1
≺ (τ ′′1 , µ

′′
1) splits M and (τ ′, µ′)

1
≺ (τ ′′2 , µ

′′
2)

splits M \ {e} since e is no longer maximal in (τ ′, µ′). As a consequence, (τ ′′1 , µ
′′
1) is the common maximal

splitting since (τ, µ)
e
≺ (τ ′, µ′)

1
≺ (τ ′′2 , µ

′′
2) is a sequence that splits M = {e} ∪M/{e}, so (τ ′′1 , µ

′′
1) = (τ ′′2 , µ

′′
2).

Now consider the third case, where e is not a branch of maximal weight. By Lemma 4.5, ∃ n st

(τ, µ)
n
≺ (τn, µn) splits e, as µn−1(e) is the maximal weight of µn−1. Suppose (τ, µ)

i
≺ (τi, µi) and

(τ ′, µ′)
i−1
≺ (τ ′i , µ

′
i). I claim that for all i = 2, ..., n − 1, we have that (τi, µi)

e
≺ (τ ′i+1, µ

′
i+1). Refer to

12



Figure 19: If two train tracks differ by a shift, they have a common splitting obtained from two splits.

Figure 20: If b is next to an isolated monogon, then it will remain a mixed branch after one splits e. As a
result, we do not allow b to be shifted.

figure 21 for a pictorial representation.

We use induction on i. The base case holds: by assumption (τ, µ)
e
≺ (τ ′, µ′) = (τ ′1, µ

′
1), where e is not

maximal in τ . Since e was assumed to be nonmaximal, by Lemma 4.7, the maximal split and the split along

e commute. As a result, because (τ, µ)
e
≺ (τ ′, µ′) = (τ ′1, τ

′
1)

1
≺ (τ ′2, µ

′
2), we obtain (τ, µ)

1
≺ (τ1, µ1)

e
≺ (τ ′2, µ

′
2).

Then (τ1, µ1)
e
≺ (τ ′2, µ

′
2).

For the inductive step, assume (τi−1, µi−1)
e
≺ (τ ′i , µ

′
i). Recall, again by Lemma 4.7, that the maximal

split (τ ′i , µ
′
i)

1
≺ (τ ′i+1, µ

′
i+1) and (τi−1, µi−1)

e
≺ (τ ′i , µ

′
i) commute. If we know the splits commute, performing

the maximal split on (τi−1, µi−1) to obtain (τi, µi) and then splitting along e will also yield (τ ′i+1, µ
′
i+1),

which would imply that (τi, µi)
e
≺ (τ ′i+1, µ

′
i+1), as desired. In particular, (τn−1, µn−1)

e
≺ (τ ′n, µ

′
n), and

since e is now a branch of maximal weight, we can apply the same logic as in case 1 or 2 to deduce that
(τn, µn) = (τ ′n+1, µ

′
n+1) is the common maximal split.

(τ ′i , µ
′
i) (τ ′i+1, µ

′
i+1)

(τi−1, µi−1) (τ ′i , µ
′
i)

split e

max split

split e

max split

We are now ready to prove Theorem 4.4.
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Figure 21: A splitting complex for the third case.

Proof. Suppose ϕ is a pseudo-Anosov map with stretch factor λϕ, and (τ, µ) is suited to Ls. By definition of
a pA map, ϕ(Ls) = λϕ(Ls) =⇒ λϕ

−1ϕ(Ls) = Ls. In other words, Ls is also suited to
(
ϕ(τ), λϕ

−1ϕ∗(µ)
)
.

Suppose we have a maximal splitting sequence

(τ, µ) ≺ (τ1, µ1) ≺ ... ≺ (τn, µn) ≺ ...

Since the action of ϕ scales all the measures of τ by the same factor, we have that maximal branches in
(τi, µi) will still be maximal in (ϕ(τi), ϕ∗(µi)). For this reason,

(ϕ(τ), ϕ∗(µ)) ≺ (ϕ(τ1), ϕ∗(µ1)) ≺ ... ≺ (ϕ(τn), ϕ∗(µn)) ≺ ...

will still be a maximal splitting sequence. By theorem 4.2, Ls is also suited to (τn, µn) since (τ, µ) ∼ (τn, µn).
Since Ls is suited to (τn, µn) and

(
ϕ(τ), λϕ

−1ϕ∗(µ)
)
, by Lemma 4.8, they share a common maximal splitting,(

ϕ(τn), λϕ
−1ϕ∗(µn)

)
= (τn+m, µn+m).

5 A Worked Example

In order to demonstrate Theorem 4.4, we present a worked example based on the case of the 4-strand pseudo-
Anosov braid of minimal dilatation presented in [2]. Instead of considering Σ0,5, the 5-punctured sphere,
we consider X, where the punctures of Σ0,5 are replaced by cone points. There is no canonical branched
double cover. One possible manifold cover is the double torus Σ2,0, as its quotient under an action of Z2×Z2

yields X, so X is an orbifold. We can easily see that Σ2,0 is not a branched double cover; in particular,
the points that are not cone points map homeomorphically to four distinct points on Σ2,0. We consider
the pseudo-Anosov map ϕ : X → X where Ls has 5 complementary regions that are monogons centered
around cone points and one that is a triangle. Like the pseudo-Anosov described in [2], ϕ has stretch factor
λϕ = 2.29663....

One can easily solve for the weights on the train track using systems of equations. We then obtain a
weighted tree of monogons similar those described in [3] through a series of shifts and folds. Finally, we

14



show there is a periodic maximal splitting sequence such that after finitely many splits, all the weights of
the branches are scaled by λϕ

−1.

5.1 Creating a Tree of Monogons

Recall Agol’s original train track, which consists of 5 monogons (with one around the point at infinity) and
one trigon, on a 5-times punctured Riemann sphere [2]. Consider the point at infinity as a puncture. The
resulting orbifold has an even number of singular points and thus lifts to Σ2,0, the genus 2 surface whose
quotient under the hyperelliptic involution is the sphere with 6 cone points. Considering the train track on
its branched double cover, Σ2,0, the monogons become bigons. As a result, the train track is, in a sense, not
minimal, as bigons are not allowed in Agol’s splitting sequence.

To circumvent this issue, we apply a series of folds and shifts on Agol’s example of the train track repre-
senting the 4-stranded braid of minimal dilatation to obtain a tree of monogons (see figure 23).

Figure 22: Calculating weights based on Agol’s example.

In order to recover the weights for the tree, we construct a system of equations with 4 variables, a, b, c, d
corresponding to the weights of 4 branches of the train track. Notice by figure 22 that determining the
weights of these 4 branches determines the weights of all branches. Minimizing the number of variables in
the system ensures against a singular system, thus making calculations on Matlab easier. We can see that
following the action of ϕ on (τ, µ), we obtain:

ϕ∗(a) = 2a+ b− c+ d; (1)

ϕ∗(b) = a+ b; (2)

ϕ∗(c) = 4a+ 2b− c; (3)

ϕ∗(d) = 2a+ b (4)

which corresponds to the matrix


2 1 −1 1
1 1 0 0
4 2 −1 0
2 1 0 0

. The eigenvector corresponding to the maximal eigenvalue,

2.29663, returns the maximal rescaled eigenvector


0.21463
0.16553
0.36086
0.25899

. We then transfer the weights to our sequence

of shifts and folds (figure 23) and obtain a weighted tree of monogons. Refer to the starting tree of monogons
in figure 24 for the resulting rescaled weighted tree.
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Figure 23: Creating a tree of monogons from splits and shifts. The final tree sits on a Riemann sphere.
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5.2 Periodic Splitting Sequence and Splitting Automata

Figure 24: Eventually, a maximal splitting sequence is periodic modulo the action of ϕ. The weights are
rescaled by λϕ

−1.

Refer to Figure 24. Suppose we call the original train track (τ, µ) and denote (τ, µ)
k
≺ (τk, µk). Note the

train track obtained after applying two maximal splits, (τ2, µ2). We notice that (τ7, µ7) = (τ7, λϕ
−1(µ2)).

From Theorem 4.4, we deduce that ϕ(τ2) = τ7 and ϕ∗(µ2) = λϕ
−1(µ2). Although we have not kept track

of the mapping class group for this particular example, there are no non-trivial automorphisms of our train
track. As a result, the dilatation uniquely determines the mapping class group.

A splitting automata of a train track is a directed graph in which the vertices are train tracks, and the
edges denote splits. A pair of commuting splits would form the edges of a square. As a result, an automata
in which all splits commute will form a cube complex. In figure 25, we present the splitting automata of
the same example explored previously. The automata contains 12 vertices and 19 edges, and 8 faces and is
clearly a cube complex, as all the splits commute. Its Euler characteristic is 1, which is the same as that of
a circle. As a result, the automata we obtain is homotopic to a circle.
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Figure 25: The full splitting automata. In particular, the teal arrows yield previously seen train tracks with
weights scaled by a factor of λ−1φ .

6 Future Directions

At the conclusion of this project, there are several unresolved questions. The first few arise from attempts
to generalize Theorems 4.1 and 4.2 to orbifolds.

First, consider a lamination on an orbifold. Changing the cuff length and twist coordinates may drasti-
cally affect the lamination, constructed from geodesics of the new hyperbolic metric. As a result, one cannot
concoct a neat set of rules that associate a change in cuff length or degree of twisting with a fold, shift, or
split of the original train track, as a change in metric will affect the new lamination globally. It would be
interesting, although unlikely, if one could take a sequence of splits, shifts, and folds and output a list of
instructions on how to alter cuff length or degree of twisting.
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One can also approach the proof of Penner-Harer’s theorems from the standpoint of ideal triangulations.
Two ideal triangulations of a punctured surface are related by Whitehead moves. By relating a train track
obtained from a stable lamination of a pseudo-Anosov to a dual spine of the triangulation, one can relate
splits and folds to Whitehead moves. As a result, one could theoretically connect a folding and splitting
sequence to a continuous sequence of Whitehead moves and provide a combinatorial approach to proving
Penner-Harer’s theorems. A small caveat is that ideal triangulations are not well-defined on orbifolds, al-
though there is an “obvious” way to define them. Given an orbifold, one could again consider an ideal
triangulation of its branched double manifold cover, and then take the quotient of the triangulation by a
group action to obtain an appropriate orbifold ideal triangulation.

Finally, revisiting the example in section 5, one notices all the splits commute, yielding a splitting complex
homotopic to a circle. Hamenstadt shows that the splitting complex, a directed graph with train tracks as
vertices and splits as edges, is CAT(0) in the manifold case. One could then explore whether this holds true
in the orbifold context. Although it is still unclear to the author of this paper why such splitting automata
are useful, it is possible there are connections to the study of braids applied to the orbits of planets and
physical problems such as the Three Body Problem. Additionally, the splitting automata could somehow be
useful in connecting the Garside solution to the word problem to the Nielsen-Thurston solution.
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